首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
主动悬架与电动助力转向系统模糊集成控制   总被引:1,自引:0,他引:1  
建立了包括转向运动模型、俯仰运动模型和侧倾运动模型的汽车主动悬架与电动助力转向系统的整车集成系统模型.分析汽车转向时转向系与悬架对车辆综合性能的影响,并应用模糊逻辑控制理论,设计了主动悬架系统与电动助力转向系统集成控制器.计算结果表明,所采用的模糊集成控制策略,有效地消除汽车转向时由转向效应对悬架作动器作用力的影响,以及车身姿态对电动助力大小的影响,不但实现了转向时的操纵轻便性,又明显提高了转弯时汽车行驶平顺性、操纵稳定性和安全性等整车综合性能。  相似文献   

2.
针对主动悬架与电动助力转向系统相互影响、相互干扰的特点,该文建立了两者集成控制模型,应用预测控制理论,设计了预测控制策略,实现了主动悬架与电动助力转向的集成控制。并在M atlab/S im u link环境中进行仿真模拟。仿真结果表明:具有预测控制策略的主动悬架与电动助力转向集成系统不仅能明显改善车辆行驶平顺性,提高转向轻便性,并且对由转向和路面输入引起的振动能够进行有效抑制,使车辆的操纵稳定性和乘坐舒适性均有不同程度的提高。  相似文献   

3.
在建立的包含电动助力转向系统的转向运动模型、俯仰运动模型和侧倾运动模型汽车整车模型基础上,选用车身横摆角速度、横向运动速度等参数评价车辆操纵稳定性。运用95百分位四次幂和力作为动载荷道路破坏的评价指标,设计了自适应模糊控制的汽车主动悬架与电动助力转向系统集成控制器,并分析了不同路面和速度对理论道路破坏系数的影响。计算结果表明,该自适应模糊集成控制策略,与被动悬架与转向系统比较,既保证了车辆操纵轻便性,又明显提高了整车稳定性,同时集成控制的车辆具有良好的道路友好性,延长了道路的使用寿命。  相似文献   

4.
为了提高车辆操纵稳定性,本文集成独立转向和主动脉冲转向提出了一种主动后轮独立脉冲转向(ARIPS)控制策略,并对此进行理论分析和试验研究.通过建立ARIPS系统仿真动力学模型,研究此系统的运行对悬架性能的影响并分析不同转向脉冲控制参数对车辆稳定性的影响.依据仿真分析和频率分析方法确定最优脉冲参数.设计ARIPS控制器及脉冲转角分配模块,基于CarSim和Simulink进行联合仿真分析,验证ARIPS的控制性能.研制并安装主动脉冲转向系统,基于试验Lexus车辆进行整车试验研究,验证ARIPS系统的实用性.仿真和试验结果表明:验证了ARIPS系统的可行性和经济性,ARIPS控制能有效提高车辆的操纵稳定性,比主动后轮转向(ARS)和主动后轮脉冲转向(ARPS)具有更好的控制效果,对改进四轮转向(4WS)系统的性能提供了一个新的研究方向和试验基础.  相似文献   

5.
电动液压助力转向系统仿真   总被引:4,自引:0,他引:4  
依据电动液压助力转向(EHPS)系统的参数,运用AMESim软件建立了电动液压助力转向系统仿真模型.分析了车速参与系统控制时对助力特性的影响.相同扭矩下,高速时提供助力较小,低速时提供助力较大.既可保证转向轻便性,又防止高速时转向盘发飘.转向盘角速度参与控制后,提高了系统的跟随性.改善了系统的回正性能.将仿真所得调试控制参数用于实际控制系统中,进行了台架实验.实验结果表明,电动液压助力转向系统的实际控制效果与仿真结果相同.  相似文献   

6.
为实现主动前轮转向系统与主动悬架系统的集成及解耦控制,该文采用自抗扰方法对两个子系统进行集成控制,设计了主动前轮转向和主动悬架的自抗扰控制器,并进行了路面扰动输入下的双移线试验。研究了车辆的路径跟踪性能、转向路感、转向灵敏度和舒适性,对比分析了无控制、主动转向单独控制和主动悬架单独控制系统集成的控制特性。结果表明,自抗扰集成控制的主动前轮转向与主动悬架能同时改善转向性能指标和舒适性能指标,提高了车辆操纵稳定性和乘坐舒适性。自抗扰控制器设计无需精确数学模型,干扰抑制也无需扰动模型,控制方法简单,鲁棒性好,易实现转向、悬架及各悬架间的解耦控制。  相似文献   

7.
汽车电动助力转向与主动悬架集成控制及其仿真   总被引:7,自引:0,他引:7  
文章根据汽车系统动力学原理,建立了汽车电动助力转向和主动悬架集成控制的动力学模型。对PD控制的EPS、最优控制下悬架和集成控制的系统进行了仿真计算。计算结果表明,该模型较好地反映了汽车转向时的实际工况,EPS和主动悬架的集成控制的效果优于单独控制,为系统的集成优化打下了基础。  相似文献   

8.
传统的液压动力转向系统容易出现过助力现象,能耗大、对环境有油污染.电动助力系统是通过带微处理器的控制器控制电动机提供助力的一种伺服控制系统,电动助力是汽车转向系统的发展方向.在对汽车电动助力转向系统深入研究的基础上,针对驾驶员操作习惯的差异、路况等的复杂性和不确定性,提出了一种新的鲁棒性强、适应性好的控制算法,并在实际车辆转向系统中得到了应用,实践证明该控制算法兼顾了控制效果和人的感觉(路感),控制效果令人满意.  相似文献   

9.
建立了整车8-DOF系统动力学模型,考虑了主动悬架控制,并增设了主动座椅控制,设计了车辆主动悬架系统的LQG控制器。基于Matlab仿真平台建立了整车8-DOF系统动力学仿真模型,对所得最优控制策略下的动态响应进行了仿真验证。仿真结果表明:为了改善人椅系统质心及车身质心的跳振性能需要在一定程度上弱化各轮轮胎动位移性能。从控制效能上来看,该最优控制器能够满足各行驶状态下对悬架性能的要求,改善了车辆的行驶平顺性。  相似文献   

10.
采用多体系统动力学(MBD)与计算机辅助控制系统设计(CACSD)相结合的方法,分析电动助力转向(EPS)系统对汽车操纵稳定性的影响.在多体系统动力学(以MSC.ADAMS软件为支撑)基础上建立包括转向系统、前后悬架系统和前后轮胎的整车动力学模型,作为考察EPS系统对整车性能影响的外部环境;在CACSD(以Matlab/Simulink软件为支撑)基础上建立EPS系统控制模型,研究其助力特性和控制策略.经试验验证,联合仿真模型相对误差在6 %以内,准确地反映了整车的实际情况.  相似文献   

11.
建立了半车三自由度汽车转向与主动悬架的综合模型,以提高汽车行驶平顺性、操纵稳定性和安全性为出发点,采用基于小波理论的最小均方(LMS)算法对转向与主动悬架集成系统进行控制.计算结果表明:采用LMS控制的转向与主动悬架集成系统可使车身垂直加速度、车身横摆角速度、车身俯仰角和前后悬架动挠度等性能参数得到优化,汽车行驶平顺性和操纵稳定性比被动系统明显改善,有效地提高了汽车综合性能;与基于全反馈控制的集成系统LQG控制器相比,LMS能自动调整权系数且控制算法简单,便于工程应用.  相似文献   

12.
针对车辆极限工况下的稳定性问题,提出一种四轮转向和主动悬架的集成控制算法。根据四轮转向单轨参考模型和主动悬架双轨模型,建立集成控制矩阵,利用模型预测算法设计集成控制器。在实车验证基础上,采用Car Sim与Matlab联合仿真,获得了转向盘鱼钩输入下的车辆横摆角速度、质心侧偏角、车身侧倾角等特性曲线,分析了该典型极限工况下车辆的稳定性控制品质。结果表明,所设计的四轮转向与主动悬架的集成控制策略能够显著的改善车辆的操纵稳定性,解决失稳问题。  相似文献   

13.
针对主动悬架耗能而限制其在电动汽车中的应用问题,采用永磁(PM)直线电机作为主动悬架系统的执行机构,建立了整车动力学模型,研究了车辆动力学性能与能量回收能力之间的关系。基于最优控制理论设计了主动悬架LQG控制器,采用层次分析法(AHP)和粒子群优化(PSO)方法优化了控制器设计参数,提高了车辆动力学性能和能量回收能力。为了实现模式切换,提出了一种新的多模式切换控制策略。在控制策略中引入舒适性因素,该因素可由驾驶员调节或根据车辆行驶状态进行选择,从而实现了不同模式下的策略切换。仿真结果表明,所提出的多模式切换控制策略显著优于传统主动悬架控制模式,从而全面提升了整车动力学性能和能量再生能力,为悬架馈能控制策略提供指导。  相似文献   

14.
基于模型预测控制理论,从提高车辆极限工况稳定性角度,研究车辆纵向和侧向运动的水平集成控制及纵向、侧向和垂向的全局集成控制.确定了分层集成控制结构,设计了转向/制动模型预测控制器和主动悬架控制器.采用单轮规则制动分配法,实现了车辆底盘转向/制动的水平集成控制和转向/制动/悬架的全局集成控制,并通过仿真实验对算法进行验证.结果表明:集成控制能有效提高车辆极限工况的稳定性和主动安全性.  相似文献   

15.
汽车转向系统先后经历机械转向、液压助力转向和电动助力转向几个阶段,然而目前电动助力转向或电控液压助力转向等难以满足智能汽车对转向技术的需求。线控转向系统作为线控智能底盘重要组成部分,是智能汽车架构中必不可少的智能转向系统。为剖析线控转向中的关键技术和发展趋势,本文将从线控转向的发展概况谈起,之后分别针对线控转向系统关键软硬件技术进行了全面概述,包括对比分析了4种路感反馈策略、智能算法在位置闭环的应用及双电机协同控制策略、基于线控转向中主动前轮转向的车辆稳定性控制研究、面向功能安全方面的软件冗余方案和硬件冗余方案;最后,对线控转向系统的未来研究趋势进行了展望,指出线控转向系统将朝着真实舒适、精准快速、安全可靠和集成控制的方向发展。  相似文献   

16.
针对电动助力转向(EPS)系统存在传感器噪声、路面干扰、参数摄动等不确定性,以及对系统动态特性的要求,设计一种基于操纵稳定性的电流H∞鲁棒控制器。分别建立EPS转向系统及简化的二自由度整车动力学模型,以驾驶员路感良好、汽车操纵稳定性强及EPS系统鲁棒性优越为控制目标,构建系统的状态空间方程和被控对象增广模型,并对EPS控制系统进行仿真。结果表明,所设计H∞鲁棒控制器不仅能够保证满意的路感、良好的操纵稳定性,而且可以有效抑制传感器噪声和路面干扰的影响,从而提高EPS系统的稳定鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号