共查询到19条相似文献,搜索用时 78 毫秒
1.
油气钻井成本是反映油田企业经济效益的重要指标.对钻井成本进行准确预测,有利于企业管理者和投资者进行科学的决策与评估.在对油气钻井成本影响因素进行分析的基础上,运用BP神经网络算法,建立了考虑成本因素之间相互关系的油气钻井成本神经网络预测模型,并结合中国石油某公司各区块钻井作业成本数据,将线性回归方法与神经网络方法进行对比,结果表明该模型具有较高的预测精度. 相似文献
2.
赵世安 《广西右江民族师专学报》2011,(3):56-60
利用主成分分析(PCA)方法优选神经网络集成个体,利用支持向量机回归集成生成输出结论,建立一个PCA支持向量机回归集成股市预测模型。试验表明,该模型能有效提高神经网络集成系统的泛化能力,预测精度高,稳定性好。 相似文献
3.
基于支持向量机的冰塞水位预测 总被引:2,自引:0,他引:2
刘彦涛 《合肥工业大学学报(自然科学版)》2010,33(10)
支持向量机方法基于结构风险最小化原理,克服了常规统计方法的局限性,能够在有限的样本集基础上兼顾模型的通用性和推广性,预测精度更高。文章利用支持向量机方法对冰塞水位进行了预测,预测结果与实际情况吻合。与BP神经网络预测结果进行对比分析,结果表明,采用支持向量机方法预测的效果较好,是一种值得推广的方法。 相似文献
4.
支持向量机在机械设备振动信号趋势预测中的应用 总被引:13,自引:0,他引:13
将支持向量机(SVMs)用于机械设备振动信号趋势预测中,研究了SVMs参数及核函数类型对SVMs预测能力的影响.试验显示,在短期预测中4种核函数有着基本相同的预测能力,而在长期预测中,径向基函数核和多项式核表现出了相对较高的预测能力,同线性核和神经网络核相比,它们的归一化均方误差约降低了20%.SVMs与向后传播神经网络、径向基函数网络和广义回归神经网络预测能力的对比表明,实现了结构风险最小化原理的SVMs具有更好的预测能力,在长期预测中,其归一化均方误差约降低了15%。 相似文献
5.
基于支持向量回归机的中国碳排放预测模型 总被引:2,自引:0,他引:2
宋杰鲲 《中国石油大学学报(自然科学版)》2012,(1):182-187
选取人口、城镇化率、人均GDP、服务业增加值比重、单位GDP能耗、煤炭消费比例等6项影响因素作为自变量,运用支持向量回归机方法构建中国碳排放预测模型。以1980—2009年碳排放及影响因素数据为样本,通过训练、测试得到具有良好学习与推广能力的支持向量回归机模型。结合"十二五"规划,设置不同情境下影响因素预测值,对2010—2015年中国碳排放进行预测。预测结果表明,中国可适当降低GDP增速,不断优化能源结构,以确保碳减排目标的有效实现。 相似文献
6.
分析了支持向量机的基本原理及算法,确定了航空兵部队油料消耗量预测模型的样本输入量,构造了航空兵部队作战油料消耗量预测函数,采用LibSVM-Matlab工具箱对模型进行编程求解,选用3个指标对预测结果进行评价。并以某空军航空兵部队油料消耗量为例,运用基于SVM的航空兵部队油料消耗量预测模型,对2009年演习的油料消耗量进行了预测,预测结果与实际值进行比较,预测精度高,为科学预测战场油料消耗量提供了科学定量的分析方法。 相似文献
7.
介绍了回归问题与支持向量机及其股市预测的研究现状,提出了采用支持向量机的股票预测方法,通过实验证明了该方法的有效性. 相似文献
8.
能源需求的支持向量机预测 总被引:2,自引:1,他引:2
对灰色、神经网络和支持向量机的三个预测模型进行了研究,以某城市的1999-2006年能源需求为例,对能源需求进行了预测.经过比较,支持向量机的预测方法精度较高. 相似文献
9.
介绍了支持向量机回归算法,运用MATLAB编写了相应程序,并对两个地下工程实例进行了预测.通过与灰色预测和人工神经网络预测结果的对比,可以看出支持向量机方法不论是在学习过程还是预测过程,都具有更高的优越性,可以应用于实际工程. 相似文献
10.
利用支持向量机分析了发生在美国加州中部的2次6级以上地震的震前大地脉动.通过对离地震最近的3个地震台站的地震数据进行震前大地脉动分析,结果表明:支持向量机能有效地区分震前大地异常脉动和平静时期的大地脉动,并且随着地震的临近预报准确率逐渐增加;2次地震的震前大地异常脉动分别始于地震前48 h和12 h.分析了加州CI地震台网内的14个地震台站记录的2003年12月22日发生在加州中部的6.4级地震所观测的震前脉动数据,发现处在震中附近的12个地震台站均观测到震前大地的异常脉动,且距离震中附近的断层越近,监测到震前脉动异常的几率越大.对3个观测站进行连续监测,结果表明:监测到大地震(M≥5)所引发的震前脉动异常的概率大于小地震(M<5).因此,该方法有望发展成为地震预报的一种有效手段. 相似文献
11.
基于相空间重构的支持向量机方法在径流中长期预报中应用 总被引:2,自引:0,他引:2
水文中长期预报对于水资源规划管理、水库及水电站调度具有十分重要的意义.针对常规混沌预测方法的局限性,提出基于相空间重构的支持向量机(SVM)预报方法.该方法首先对径流时间序列进行混沌辨识,然后对其进行相空阃重构,采用基于结构风险最小化的SVM进行径流预报.对于SVM的参数优选问题.以径向基核函数作为核函数,采用混沌交尺度优化方法进行参数寻优.实例表明.该方法优于SVM和人工神经网络(ANN)预报方法.且具有良好的泛化推广能力. 相似文献
12.
基于支持向量机的软测量建模方法的应用 总被引:1,自引:0,他引:1
利用基于最小二乘支持向量机(LS-SVM)的软测量建模方法,通过工业现场数据来对丁二烯精馏装置建立软测量模型.对于该软测量模型,支持向量机方法比BP神经网络方法具有更好的泛化能力.研究结果表明,基于最小二乘的支持向量机建模方法是一种有效的软测量建模方法. 相似文献
13.
不确定支持向量机在洪水预测模型中的应用 总被引:1,自引:0,他引:1
准确及时地进行洪水预测对洪水预报、洪水实时调度及水资源的合理调度起着非常关键的作用.提出一种粗糙集理论和支持向量机相结合的洪水预测模型,利用粗糙集理论对支持向量机的输入数据集进行约简预处理,通过发现数据间的关系去掉冗余输入信息,简化输入空间的表达信息,提高支持向量机训练的速度,获得较高的预测精度.实验结果表明,该模型能提高支持向量机训练的速度,获得较高的预测精度. 相似文献
14.
讨论了支持向量机回归与v-支持向量机分类解的关系,证明了对给定的v-支持向量机分类问题的解,通过选择适当参数,存在一个支持向量机回归问题的解与它等价. 相似文献
15.
结合GPS测量和水准测量资料,利用支持向量机(SVM)方法对GPS高程进行了转换,并与神经网络和多项式拟合等拟合的结果进行了比较,得出了一些有益的结论. 相似文献
16.
基于支持向量机的模式识别方法 总被引:4,自引:0,他引:4
介绍了由Vapnik等人提出的统计学习理论和由此发展的支持向量机,分析了其应用前景和研究方向,两个算例表明,在模式识别领域中,采用支持向量机这一新方法,具有其他传统方法不可比拟的优势。 相似文献
17.
基于光滑化方法的支持向量回归算法 总被引:2,自引:0,他引:2
支持向量机是在统计学习理论的基础上发展起来的新一代学习算法,由于其出色的泛化能力,在文本分类、手写识别、数据挖掘、生物信息学等领域中获得了较好的应用.提出了一种光滑支持向量回归算法,实验结果表明,它相对于其它回归训练方法有较快的收敛速度和较高的拟合精度. 相似文献
18.
利用最小二乘方法和临近支持向量机(PSVM)算法,并结合双胞支持向量机(TSVR),提出了最小二乘双胞支持向量回归机(LSTSVR).作为对照,TSVR需要求解2个二次规划问题,而LSTSVR仅需求解2个线性方程组.最后利用不同的实例验证了所提算法的可行性和有效性. 相似文献
19.
一种基于支持向量回归方法在RoboCup中的应用 总被引:2,自引:0,他引:2
对RoboCup中截球问题引入了支持向量回归方法,通过采集样本训练预测模型来预测Agent成功截到球时球运动过的距离。为了达到更好的预测效果,对此模型的参数选择问题进行了相应的研究,最后将此预测模型与广义回归神经网络等传统方法相比较,结果表明,在截球距离的预测精度方面要优于传统的广义回归神经网络。 相似文献