共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
提出一种基于深度卷积神经网络的化妆品塑料瓶表面缺陷检测算法。采用百万像素级别的工业相机采集大量的塑料瓶图像样本,并通过HSV(hue,saturation,value)颜色空间变换和Otsu阈值分割等方法对图像进行预处理。采用随机图像变换法对数据集进行增强,并对图像进行标准归一化处理。在卷积神经网络模型中应用深度可分离卷积和Dropout技术以减少参数量,从而避免过度拟合。使用训练样本集训练该模型,并在测试集中将结果与几种经典图像识别算法进行比较分析,结果显示,本文算法的识别准确率高达约0.97。由此表明本文算法的效果优于其他经典算法,有望将其应用于化妆品塑料瓶缺陷检测的工业自动化系统,以提升缺陷识别效果,从而提高生产效率。 相似文献
3.
针对铜封帽内螺纹裂纹缺陷检测目前存在检测速度慢、检测精度低、稳定性及泛化能力差等问题,提出了一种改进的YOLOv3模型算法来检测铜封帽内螺纹裂纹缺陷。首先,通过坐标极化对样本图片进行特征增强;然后采用K-means++聚类算法对数据集进行尺度分析;再利用SqueezeExcitation模块对YOLOv3模型检测部分进行改造,在3个特征尺度特征的输出部位均添加此模块,提升模型对有效特征的响应;最后,模型分别与Faster-R-CNN、SSD的检测结果进行比较。实验结果表明,基于深度学习改进的YOLOv3算法优于其他检测算法,其缺陷的检测精度为96.3%、检测速率为44FPS,能够实现铜封帽内螺纹裂纹缺陷的精确检测和识别,满足生产部门对铜封帽检修的需求。 相似文献
4.
针对在自然交通场景中道路不同种类目标的边界框大小差异巨大,现有实时算法YOLOv3无法很好地平衡大、小目标的检测精度等问题,重新设计了YOLOv3目标检测算法的特征融合模块,进行多尺度特征拼接,对检测模块进行改进设计,新增2个面向小目标的特征输出模块,得到一种新的具有5个检测尺度的道路目标多尺度检测方法YOLOv3_5d.结果表明:改进后的YOLOv3_5 d算法在通用自动驾驶数据集BDD100 K上的检测平均精度为0.5809,相较于原始YOLOv3的检测平均精度提高了0.0820,检测速度为45.4帧·s-1,满足实时性要求. 相似文献
5.
6.
针对磁瓦缺陷种类多样性及无法准确描述其缺陷的问题,提出一种基于卷积神经网络的缺陷检测方法。构建缺陷类型的数据集,并对数据集中的图像进行预处理;设置卷积神经网络模型参数,训练缺陷分类器;通过训练结果完成对缺陷图像的识别并标注缺陷类型。实验结果表明,该方法检测的准确性和实时性均优于传统检测方法,具有非常好的鲁棒性,为工业生产的实际应用提供了可靠的依据。 相似文献
7.
8.
针对半导体生产过程中的晶粒缺陷检测任务,提出了一种融入多头注意力机制的新型CNN模型(Attn-Net).该模型使用深度可分离卷积和标准卷积累加的卷积结构提取输入图像特征,借助多头注意力机制更新特征权重,输出注意力机制筛选的图像分类结果.在13513张晶粒图像构成的数据集上训练、验证及测试,并与VGG-16、ResNe... 相似文献
9.
相较于传统烟火、烟雾检测,基于卷积神经网络算法的烟火检测具有更高检测精度和效率,提出基于改进YOLOv3算法的烟火识别方法,应用高斯参数设计损失函数并建立YOLOv3边界框模型,实现边界框置信度计算以减少负样本.为充分利用图像局部特征信息,对网络结构进行改进,以实际烟火现场图片为待检对象,完成烟火识别过程计算.结果表明,与基础YOLOv3对比,本研究提出的改进YOLOv3算法平均精度提高5.5%,该方法有助于提升智能烟火预警、人员救助和险情跟踪作业水平,最终提升事故灾害应急和管理能力. 相似文献
10.
相较于传统烟火、烟雾传感器检测方法,基于卷积神经网络算法的烟火检测具有更高的检测精度和效率,并能提供火灾现场全局/局部详细信息。本文提出基于改进YOLOv3算法的烟火识别,应用高斯参数设计损失函数从而建立YOLOv3边界框模型,可预测边界框定位不确定性,减少负样本;为充分利用图像局部特征信息对网络结构进行改进,以实际烟火现场图片为研究对象,完成烟火识别过程计算。利用不同拍摄角度、光照条件自制火焰和烟雾数据集进行测试,结果表明,与传统YOLOv3对比,本文提出的改进YOLOv3算法平均精度提高了4.2%。研究方法将有助于提升智能烟火预警、人员救助和险情跟踪作业水平,最终提升事故灾害的应急能力。 相似文献
11.
焊接是一种重要的连接技术,但是焊缝缺陷会直接影响焊接结构的性能和使用寿命。焊缝缺陷的种类和特征的多样性增加了缺陷检测的复杂性。首先,提出一种新颖的并行残差注意力模块,在通道和空间维度上充分利用全局平均池化和全局最大池化来捕获全局特征,并与输入特征相乘,自适应的选择缺陷特征,显著提升了网络模型的特征表达能力。其次,针对焊缝缺陷长宽比悬殊的问题,利用注意力机制指导锚框自学习图像特征,预测锚框的位置和形状,围绕缺陷区域自适应生成非均匀分布的任意形状的感兴趣区域。最后,设计了端到端的由注意力引导感知的深度学习网络模型。为验证所提模型的有效性,在包含3 403张图像(其中1 001张有缺陷)的X射线焊缝数据集上,通过定性的分析和定量的对比。实验结果表明:检测指标平均精度均值(mean average precision, mAP)达到了66.74%,与原算法相比提升了5.78%,平均交并比(mean intersection over union, mIoU)提升了7.21%,基本满足对焊缝缺陷的高精度检测。 相似文献
12.
针对困难气道气管插管过程中内窥镜图像视角较小、目标尺度变化大、相互遮挡等问题,融合内窥镜图像和CO2浓度信息,提出基于深度学习的多模态气管插管智能目标检测算法。首先,对传统的YOLOv3网络进行改进,利用不同扩张率的空洞卷积构建并行多分支空洞卷积模块,并对输出特征进行上采样和张量拼接;其次,根据多路CO2浓度差异,利用矢量化定位算法定位目标中心位置,校正YOLOv3得到的边界框的中心坐标,提升小目标检测的精度,辅助气道位置的定位;最后,基于该算法,研发了新型多模态气管插管辅助装置初代样机,并在模拟气道中进行实验,验证其可行性。在模拟气道中,该新型辅助装置的操作时间中位数为15.5 s,操作成功率可达97.3%。研究结果表明,基于深度学习的多模态气管插管智能目标检测算法能够有效地辅助气管插管操作。 相似文献
13.
针对“黑飞”无人机侵犯公民隐私、危害个人及公共安全,现有的无人机检测算法难以平衡检测速度和精度且对小目标的检测精度较低等不足,本文在YOLOv3的基础上进行改进,提出MS-Net (Multi-Scale Object Detection Network) 对低空中的无人机进行快速高效地检测,为实现后续的防护压制提供依据。针对锚点框,通过 K-means聚类方法得出更准确预测目标区域的位置。在特征提取部分,使用SSP (Spatial Pyramid Pooling) 提取更丰富的特征信息,提升分类精度。在检测部分,提出ESE (Enhanced Sequeeze and Excitation) 通道注意力机制在基本不影响检测速度的同时实现更加精确的多尺度目标检测。实验结果表明:该方法在由无人机、风筝、鸟等组成的数据集上的检测速度为51FPS,平均准确率(mean average precision, mAP)为91.39%,比 YOLOv3 网络提高了6.42%;特别地,在无人机目标上的平均精度(average precision, AP)提升了7.42%。 相似文献
14.
采用负压波法检测管线泄漏信号.负压波信号由设置在管线两端的传感器拾取,根据压力波的梯度特征和压力变化率的时间差,利用相关信号处理方法判断泄漏程度和泄漏位置.同时根据大庆油田管线实际要求,采用GPS时间校对和无限扩频网,实现远程数据传输和泄漏自动检测.该项研究有利于保护国家资源,保护自然环境. 相似文献
15.
基于模糊RBF神经网络的管道泄漏检测方法 总被引:1,自引:0,他引:1
针对模糊BP神经网络在管道泄露检测与估计中存在网络构建训练速度慢、易陷入局部最优等问题,提出将模糊RBF神经网络方法应用于管道的泄漏检测与估计.首先依据管道泄漏时流量、压力的变化机理,将采集到的实际运行中管道内的流量差与压力差信号模糊化后作为RBF神经网络的输入,以泄漏尺寸大小的置信度作为网络的输出,并结合专家先验知识所得的模糊规则,构建管道泄漏检测的模糊RBF神经网络.进而以实际管道运行数据对其进行离线仿真测试,仿真结果表明模糊RBF神经网络克服了模糊BP神经网络的不足,提高了泄漏估计的精度,使网络构建更加高效、优化. 相似文献
16.
车辆信息检测是车型识别在智慧交通领域中的首要任务。针对现有的车辆信息检测技术在检测速度、精度以及稳定性方面存在的问题,提出了基于YOLOv3的深度学习目标检测算法——YOLOv3-fass。该算法以DarkNet-53网络结构为基础,删减了部分残差结构,降低了卷积层的通道数,添加了1条下采样支路和3个尺度跳连结构,增加了一个检测尺度,并通过K-均值聚类与手动调节相结合的方法计算出12组锚框值。最后通过迁移学习机制对YOLOv3-fass算法进行微调。在自研的车辆数据集上,YOLOv3-fass算法与YOLOv3、YOLOv3-tiny、YOLOv3-spp算法以及具有ResNet50和DenseNet201经典网络结构的算法做了对比实验,结果表明YOLOv3-fass算法能够更精准、高效、稳定地检测到车辆信息。 相似文献
17.
基于原有YOLOv3模型占用存储空间较大,所需初始化数据集样本和参数较多的问题,本文提出了一种基于YOLOv3的深度学习目标检测压缩模型YOLOv3-ADS.该模型使用拼接、叠加等方法对较少的有代表性的初始数据集进行数据增强,引入了DIoU损失函数,提升了目标检测的准确度.最后,通过稀疏训练和剪枝率阈值设置实现了YOL... 相似文献
18.
基于函数链神经网络的管道煤气流量计量系统 总被引:5,自引:1,他引:5
在管道煤气计量系统测量中引入管道煤气相对湿度修正,并采用湿度传感器转换相对湿度信号,利用函数链神经网络对管道煤气工况温度下所对应的水蒸汽饱和压力进行拟合,得到基于函数链神经网络的管道煤气流量计量模型和在线计量系统,从而大大简化管道煤气流量计量软件,在流量计设计范围内实现管道煤气流量实时在线计量.实际应用结果表明,该计量系统测量管道煤气流量误差小于0.7%. 相似文献
19.
付兴宏 《辽宁师专学报(自然科学版)》2012,(2):66-68
城市地下管网是城市的重要基础设施,管理起来非常困难,利用地理信息系统(GIS)则能够降低管理难度.结合GIS空间数据模型和开发模式,确定系统技术方案,并讨论城市地下管网管理系统的主要实现方法. 相似文献