首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
TRPM5, a cation channel of the TRP superfamily, is highly expressed in taste buds of the tongue, where it has a key role in the perception of sweet, umami and bitter tastes. Activation of TRPM5 occurs downstream of the activation of G-protein-coupled taste receptors and is proposed to generate a depolarizing potential in the taste receptor cells. Factors that modulate TRPM5 activity are therefore expected to influence taste. Here we show that TRPM5 is a highly temperature-sensitive, heat-activated channel: inward TRPM5 currents increase steeply at temperatures between 15 and 35 degrees C. TRPM4, a close homologue of TRPM5, shows similar temperature sensitivity. Heat activation is due to a temperature-dependent shift of the activation curve, in analogy to other thermosensitive TRP channels. Moreover, we show that increasing temperature between 15 and 35 degrees C markedly enhances the gustatory nerve response to sweet compounds in wild-type but not in Trpm5 knockout mice. The strong temperature sensitivity of TRPM5 may underlie known effects of temperature on perceived taste in humans, including enhanced sweetness perception at high temperatures and 'thermal taste', the phenomenon whereby heating or cooling of the tongue evoke sensations of taste in the absence of tastants.  相似文献   

3.
Adaptive evolution plays a role in the functional divergence and specialization of taste receptors and the sense of taste is thought to be closely related to feeding ecology.To examine whether feeding ecology has shaped the evolution of taste receptor genes in vertebrates,we here focus on Tas1r gene family that encodes umami(Tas1r1 and Tas1r3 heterodimer) and sweet(Tas1r2 and Tas1r3 heterodimer) taste receptors.By searching currently available genome sequences in 48 vertebrates that contain 38 mammals,1 reptile,3 birds,1 frog,and 5 fishes,we found all three members of Tas1rs are intact in most species,suggesting umami and sweet tastes are maintained in most vertebrates.Interestingly,the absence and pseudogenization of Tas1rs were also discovered in a number of species with diverse feeding preferences and distinct phylogenetic positions,indicating widespread losses of umami and/or sweet tastes in these animals,irrespective of their diet.Together with previous findings showing losses of tastes in other vertebrates,we failed to identify common dietary factors that could result in the taste losses.Our results report here suggest the evolution of Tas1rs is more complex than we previously appreciated and highlight the caveat of analyzing sequences predicted from draft genome sequences.Future work for a better understanding of taste receptor function would help uncover what ecological factors have driven the evolution history of Tas1rs in vertebrates.  相似文献   

4.
Editorial: taste     
Brody H 《Nature》2012,486(7403):S1
  相似文献   

5.
6.
Tlsty T 《Nature》2008,453(7195):604-605
  相似文献   

7.
8.
Ruxton GD  Speed MP 《Nature》2005,433(7023):205-207
  相似文献   

9.
Gravitz L 《Nature》2012,486(7403):S14-S15
  相似文献   

10.
Walsh CT 《Nature》2006,443(7109):285-286
  相似文献   

11.
12.
Bernays EA  Singer MS 《Nature》2005,436(7050):476
Taste sensation and food selection by animals can change adaptively in response to experience, for example to redress specific nutrient deficiencies. We show here, in two species of caterpillar, that infection by lethal parasites alters the taste of specific phytochemicals for the larvae. Given that these compounds are toxic to the parasites and are found in plants eaten by the caterpillars, their changed taste may encourage parasitized caterpillars to increase consumption of plants that provide a biochemical defence against the invaders.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号