共查询到19条相似文献,搜索用时 62 毫秒
1.
基于MATLAB的BP神经网络进行教师评估 总被引:4,自引:0,他引:4
根据影响教师评估成绩的指标构建了BP神经网络模型,应用MATLAB工具直接根据教师的表现来估算教师的评估成绩,对神经网络在教师评估中的应用作了新的尝试. 相似文献
2.
利用MATLAB实现BP神经网络的设计 总被引:1,自引:0,他引:1
BP网络,即多层前馈神经网络,因其采用误差反向传播算法(Error Back Propagation,即BP算法)而得名,是目前应用最为广泛的神经网络之一。主要应用于模式识别、函数逼近、数据压缩及预测等领域。美国的Mathwork公司推出的MATLAB软件包既是一种非常实用有效的科研编程软件环境,又是一种进行科学和工程计算的交互式程序。MATLAB本身带有神经网络工具箱,可以大大方便权值训练,减少训练程序工作量,有效的提高工作效率。 相似文献
3.
梯度算法广泛应用于训练前馈神经网络.对于单输出前馈神经网络的梯度算法的收敛性已经有了详细的讨论.研究了带有多个输出单元的BP神经网络的梯度算法,证明了误差函数在梯度算法所生成的权向量序列上的单调递减性,并且证明了梯度算法的弱收敛性和强收敛性. 相似文献
4.
5.
6.
基于BP神经网络的水产健康养殖专家系统设计与实现 总被引:2,自引:0,他引:2
针对传统专家系统的知识获取困难、推理能力弱、智能水平低和实用性差等缺点,阐述了BP神经网络运用于水产健康养殖专家系统的设计思想,对水产养殖中的饲养、水环境调控、疾病诊断的模糊描述进行量化,从系统模型和实现流程上说明本专家系统的特点,并以水质评价子系统为例,对平台功能和性能进行测试.实验数据表明,误差小于1%.该平台克服了完全依靠专家经验的主观性,诊断效率高,具有较高的实用性、通用性和灵活性. 相似文献
7.
基于BP神经网络的干热风灾害预测 总被引:1,自引:0,他引:1
干热风是我国新疆,西北等地农业气象灾害之一,其形成因素呈现复杂的非线性关系.利用传统方法很难建立起一个精确完善的预测模型.人工神经网络具有强大的非线性映射能力,尤其是BP神经网络在预测领域中被广泛应用.本文利用BP神经网络对干热风灾害进行了预测.结果表明,基于BP神经网络的干热风预测模型误差小,能达到满意的效果. 相似文献
8.
为了提高BP神经网络预测模型对电动汽车电池SOC值预测的准确性,采用遗传算法GA和粒子群算法PSO两种优化算法分别对BP神经网络进行优化,即优化BP神经网络的权值和阈值,然后训练BP神经网络预测模型以求得最优解。将该方法应用到预测电动汽车电池的SOC值中并与实际测量的SOC值进行验证比较。仿真实验表明,经过粒子群算法优化后的BP神经网络预测电动汽车SOC值的误差在1.0%~4.4%之间,明显优于采用遗传算法优化的误差范围1.6%~10%和传统的BP神经网络误差范围2.0%~72%。 相似文献
9.
铁路信号集中监测系统通过采集信号设备开关量、模拟量并记录分析,实现了设备工作状态监测、故障报警等功能。为了进一步实现集中监测系统对设备故障原因的分析,讨论基于BP神经网络的集中监测故障诊断流程,对信号设备故障机理的分析确定特征参量,再利用集中监测系统功能获取故障数据,将故障数据作为训练样本对神经网络进行训练,从而获取其中的映射关系。集中监测系统实时监测特征参量的异常变化,将测试的信号设备特征参量作为待诊断样本输入神经网络。结果表明,网络将会输出最匹配的诊断结果,实现集中监测系统的故障诊断功能。 相似文献
10.
依据1999—2011年湘江出口樟树港站水质监测数据,选取溶解氧等10个水质指标,对数据优化后运用BP神经网络模型对其进行水质综合评价与分析,发现湘江出口水质具有明显的季节性与趋势性,近年来水质有所好转.同时对氨氮、溶解氧、总氮3个指标进行了季节性分析,并运用季节性水平模型计算了水质综合指数的季节比,将13年来的数据分3个年段对比分析,发现水质综合指数季节比与湘江降水量季节比、湘江出口水温季节比存在负相关性. 相似文献
11.
地应力测量及分析研究,对地应力活动方式、构造体系的研究以及岩土工程与结构的设计和稳定性,都具有重大的理论意义和实用价值.BP神经网络算法比较成熟,已被广泛应用,但一般BP神经网络算法存在训练学习速度较慢、样本泛化能力差的问题,通过引入动态学习因子和惯性因子以及模拟辅助样本,对神经网络进行了改进.通过调节动态学习因子和惯性因子以及对样本集数据处理等手段,对样本的学习、训练进行优化处理,通过实例验证,将优化好的网络样本训练结果与一般结果进行比较,结果表明对三层BP神经网络进行的优化,在提高计算精度的同时也提高了网络的收敛速率,证明改进的算法能够很好用于地应力分析. 相似文献
12.
基于BP神经网络的项目投资风险评价 总被引:1,自引:0,他引:1
为了科学准确地对风险投资项目进行评价,利用BP神经网络的原理建立了用于项目投资风险评价的BP神经网络模型,通过对福建省14个高技术项目投资风险的评价,表明由该模型获得的结果是可靠的。 相似文献
13.
基于粒子群优化的BP神经网络预测方法及其应用研究 总被引:1,自引:0,他引:1
本文提出了一种基于粒子群优化的BP神经网络预测方法.该方法利用粒子群优化算法全局搜索BP神经网络的权值和阈值,并利用优化后的BP网络建立预测模型对经济指标进行预测.仿真实验结果表明,该方法克服了传统BP神经网络本身所存在的局部最小值和训练速度慢等不足,能够较好应用于定量经济指标预测,有效提高了预测的精度. 相似文献
14.
利用BP网络模型在解决砂土液化评价这类非线性问题方面的优势,选取不同的参数组合,建立不同的砂土液化判别BP神经网络模型,并根据现场实测资料进行比较分析.结果表明,以地震烈度、标准贯入点深度、地下水位深度、标贯击数、不均匀系数及地震剪应力比作为输入节点的砂土液化判别BP神经网络模型最为合理. 相似文献
15.
16.
针对传统铁路客运量预测方法的不足,提出运用改进BP神经网络结合四阶段法进行客运量预测,给出了预测算法,建立了铁路客运量神经网络预测模型,并对敦煌铁路客运量进行预测,设计网络参数,进行网络学习和训练,最终得到较为精确的2010年及2015年敦煌铁路客运量,为该线路今后的运营管理提供决策参考. 相似文献
17.
BP人工神经网络与遗传算法在型材挤压模具参数优化中的应用 总被引:4,自引:0,他引:4
基于MATLAB平台,将BP人工神经网络与遗传算法应用于型材挤压模具参数优化设计.首先利用BP神经网络来训练已有实验值,然后将训练后的神经网络作为知识源,通过曲线拟合与逼近求得设计变量与目标函数值的函数关系表达式,最后将这一函数表达式作为遗传算法的适应度函数进行遗传迭代寻找最优解.采用曲线拟合方法将其知识源转化成为了具体的函数表达式,直观地体现了神经网络的知识源,为后继的遗传算法提供了明确的适应度函数.数值模拟分析表明,对挤压模具结构的优化是合理的. 相似文献
18.