共查询到20条相似文献,搜索用时 15 毫秒
1.
汪文贤 《安徽师范大学学报(自然科学版)》2007,30(2):120-123
主要研究了具有平行Ricci曲率黎曼流形中的极小子流形,获得了J.Simons型积分不等式,推广了局部对称空间该类子流形的有关结果. 相似文献
2.
主要研究了具有平行Ricci曲率的黎曼流形中的极小子流形关于截面曲率的Pinching定理.,推广了局部对称空间中该类子流形的有关结果. 相似文献
3.
廖蔡生 《华东师范大学学报(自然科学版)》1999,(1):8-15
该文研究Ricci曲率平行的黎曼流形,将文(6),(7)中Einstein流形的一些刚性定理推广到Ricci曲率平行的黎曼流形上。 相似文献
4.
利用由Ricci曲率张量诱导的一个关于L2-内积自伴的算子建立紧致黎曼流形上的某一函数不等式,得到这类流形为Einstein空间的一些充分条件。 相似文献
5.
6.
许文彬 《厦门大学学报(自然科学版)》2007,46(5):731-733
几何学研究的一个中心问题是曲率与拓朴性质之间的关系.本文讨论了具非负Ricci曲率的完备非紧黎曼流形的体积增长与其拓扑性质之间的关系.通过对测地球内的由球心点出发的最短测地线集合的测度与非最短测地线的测度的比较分析,根据距离函数临界点理论所隐含的拓扑性质,在大体积增长的情况下,得到流形拓扑的有限性. 相似文献
7.
詹华税 《集美大学学报(自然科学版)》1999,4(2):6-12
应用体积比较定理,Busemann函数,Gromov-Hausdorff极限等了具非负Ricci曲率的完备非紧黎曼流形的拓扑性质。 相似文献
8.
研究了一类具有渐近非负Ricci曲率完备非紧的n维黎曼流形,利用推广的Excess函数和Busemann函数,证明了具有渐近非负Ricci曲率完备非紧的n维黎曼流形在k_p(r)≥-C/(1+r)α和大体积增长的条件下具有有限拓扑型,从而推广了已有的一系列结果。 相似文献
9.
郑媛 《杭州师范学院学报(自然科学版)》2009,8(3):189-192,198
主要研究了Ricci曲率平行的黎曼流形中具有常平均曲率的紧致超曲面,得到了J.Simons型积分不等式,推广了局部对称空间中该超曲面的有关结果. 相似文献
10.
《阜阳师范学院学报(自然科学版)》2017,(1):1-3
通过建立任意黎曼流形零迹黎曼曲率张量模长平方的拉普拉斯公式,在具有平行Cotton张量、正Sobolev常数和负数量曲率的条件下,证明了完备非紧黎曼流形的一个刚性定理,推广了相关结果。 相似文献
11.
詹华税 《集美大学学报(自然科学版)》1999,2(1):7-11
讨论了具非负Ricci曲率的完备Riemann流形上的无共轭点测地线的性质,证明了单连通具拟正Ricci曲率的三维完备非紧Riemann流形的第一Betti数b1≤n—3。 相似文献
12.
应用Gromov-Hausdorff收敛性和Toponogov型比较定理得到临界半径CP的一个上界估计,结合距离函数与临界点的关系,得到具有非负Ricci曲率且满足αM>12的完备非紧Riemann流形在几个距离函数有限的条件下微分同胚于Rn的结果,从而进一步支持P.Petersen的猜想. 相似文献
13.
崔玉衡 《辽宁大学学报(自然科学版)》1990,17(3):1-4
在[1]中给出了黎曼流形中平行曲率超曲面的条件和某些性质,本文引入法联络,将[1]的结果可直接推广到黎曼流形的子流形上去。 相似文献
14.
给出了20世纪90年代以来具非负Ricci曲率的大体积增长的黎曼流形的研究进展,其主要方法是通过对过剩函数临界点的存在性进行讨论。 相似文献
15.
利齐曲率满足某些条件的极小子流形 总被引:2,自引:0,他引:2
汪富泉 《吉首大学学报(自然科学版)》1987,(2)
本文对〔2〕中的两个不等式给出了严格的证明,并用它们和Ricci曲率讨论了常曲率流形的紧致极小子流形的量子化现象,得到与〔2〕第10节相应的结果,文中又用Ricci曲率代替截面曲率,得到了与〔2〕第11节有关Kahler流形的复子流形的相应结果. 相似文献
16.
17.
在Contact黎曼流形上讨论了关于联络↓Δ^-的截面曲率及相关的几个等价条件,并在此基础上给出了联络↓Δ^-的曲率张量与数量曲率的公式.证明了在Contact黎曼流形(M.η.g)上,Bocher型曲率张量是Gauge变换的不变量当且仅当对应的Contact-Riemanian结构是可积的. 相似文献
18.
19.
利用Huisken的热流方法,推广了Hamilton的3维Ricci流的著名结果,证明了一个球面定理,如果黎曼曲率张量的模长和它的数量曲率分量U的模长的比接近于1,则M容许一个正的常曲率的度量。 相似文献
20.