首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In this paper, we propose a likelihood ratio-based method to evaluate density forecasts, which can jointly evaluate the unconditional forecasted distribution and dependence of the outcomes. Unlike the well-known Berkowitz test, the proposed method does not require a parametric specification of time dynamics. We compare our method with the method proposed by several other tests and show that our methodology has very high power against both dependence and incorrect forecasting distributions. Moreover, the loss of power, caused by the nonparametric nature of the specification of the dynamics, is shown to be small compared to the Berkowitz test, even when the parametric form of dynamics is correctly specified in the latter method.  相似文献   

2.
This paper addresses the issues of maximum likelihood estimation and forecasting of a long-memory time series with missing values. A state-space representation of the underlying long-memory process is proposed. By incorporating this representation with the Kalman filter, the proposed method allows not only for an efficient estimation of an ARFIMA model but also for the estimation of future values under the presence of missing data. This procedure is illustrated through an analysis of a foreign exchange data set. An investment scheme is developed which demonstrates the usefulness of the proposed approach. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
Whitlock and Queen (1998) developed a dynamic graphical model for forecasting traffic flows at a number of sites at a busy traffic junction in Kent, UK. Some of the data collection sites at this junction have been faulty over the data collection period and so there are missing series in the multivariate problem. Here we adapt the model developed in Whitlock and Queen ( 1998 ) to accommodate these missing data. Markov chain Monte Carlo methods are used to provide forecasts of the missing series, which in turn are used to produce forecasts for some of the other series. The methods are used on part of the network and shown to be very promising. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
    
We propose an innovative approach to model and predict the outcome of football matches based on the Poisson autoregression with exogenous covariates (PARX) model recently proposed by Agosto, Cavaliere, Kristensen, and Rahbek (Journal of Empirical Finance, 2016, 38(B), 640–663). We show that this methodology is particularly suited to model the goal distribution of a football team and provides a good forecast performance that can be exploited to develop a profitable betting strategy. This paper improves the strand of literature on Poisson‐based models, by proposing a specification able to capture the main characteristics of goal distribution. The betting strategy is based on the idea that the odds proposed by the market do not reflect the true probability of the match because they may also incorporate the betting volumes or strategic price settings in order to exploit betters' biases. The out‐of‐sample performance of the PARX model is better than the reference approach by Dixon and Coles (Applied Statistics, 1997, 46(2), 265–280). We also evaluate our approach in a simple betting strategy, which is applied to English football Premier League data for the 2013–2014, 2014–2015, and 2015–2016 seasons. The results show that the return from the betting strategy is larger than 30% in most of the cases considered and may even exceed 100% if we consider an alternative strategy based on a predetermined threshold, which makes it possible to exploit the inefficiency of the betting market.  相似文献   

5.
We consider finite state-space non-homogeneous hidden Markov models for forecasting univariate time series. Given a set of predictors, the time series are modeled via predictive regressions with state-dependent coefficients and time-varying transition probabilities that depend on the predictors via a logistic/multinomial function. In a hidden Markov setting, inference for logistic regression coefficients becomes complicated and in some cases impossible due to convergence issues. In this paper, we aim to address this problem utilizing the recently proposed Pólya-Gamma latent variable scheme. Also, we allow for model uncertainty regarding the predictors that affect the series both linearly — in the mean — and non-linearly — in the transition matrix. Predictor selection and inference on the model parameters are based on an automatic Markov chain Monte Carlo scheme with reversible jump steps. Hence the proposed methodology can be used as a black box for predicting time series. Using simulation experiments, we illustrate the performance of our algorithm in various setups, in terms of mixing properties, model selection and predictive ability. An empirical study on realized volatility data shows that our methodology gives improved forecasts compared to benchmark models.  相似文献   

6.
    
In this paper we investigate the applicability of several continuous-time stochastic models to forecasting inflation rates with horizons out to 20 years. While the models are well known, new methods of parameter estimation and forecasts are supplied, leading to rigorous testing of out-of-sample inflation forecasting at short and long time horizons. Using US consumer price index data we find that over longer forecasting horizons—that is, those beyond 5 years—the log-normal index model having Ornstein–Uhlenbeck drift rate provides the best forecasts.  相似文献   

7.
    
This paper proposes new methods for ‘targeting’ factors estimated from a big dataset. We suggest that forecasts of economic variables can be improved by tuning factor estimates: (i) so that they are both more relevant for a specific target variable; and (ii) so that variables with considerable idiosyncratic noise are down‐weighted prior to factor estimation. Existing targeted factor methodologies are limited to estimating the factors with only one of these two objectives in mind. We therefore combine these ideas by providing new weighted principal components analysis (PCA) procedures and a targeted generalized PCA (TGPCA) procedure. These methods offer a flexible combination of both types of targeting that is new to the literature. We illustrate this empirically by forecasting a range of US macroeconomic variables, finding that our combined approach yields important improvements over competing methods, consistently surviving elimination in the model confidence set procedure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper uses monthly survey data for the G7 countries for the time period 1989–2007 to explore the link between expectations on nominal wages, prices and unemployment rates as suggested by the wage and price Phillips curves. Four major findings stand out. First, we find that survey participants trust in both types of Phillips curve relationships. Second, we find evidence in favor of nonlinearities in the price Phillips curve. Third, we take into account a kink in the price Phillips curve to indicate that the slope of the Phillips curve differs during the business cycle. We find strong evidence of this feature in the data which confirms recent theoretical discussions. Fourth, we employ our data to the expectations‐augmented Phillips curve model. The results suggest that professional forecasters adopt this model when forecasting macroeconomic variables. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
    
In this paper, we assess the predictive content of latent economic policy uncertainty and data surprise factors for forecasting and nowcasting gross domestic product (GDP) using factor-type econometric models. Our analysis focuses on five emerging market economies: Brazil, Indonesia, Mexico, South Africa, and Turkey; and we carry out a forecasting horse race in which predictions from various different models are compared. These models may (or may not) contain latent uncertainty and surprise factors constructed using both local and global economic datasets. The set of models that we examine in our experiments includes both simple benchmark linear econometric models as well as dynamic factor models that are estimated using a variety of frequentist and Bayesian data shrinkage methods based on the least absolute shrinkage operator (LASSO). We find that the inclusion of our new uncertainty and surprise factors leads to superior predictions of GDP growth, particularly when these latent factors are constructed using Bayesian variants of the LASSO. Overall, our findings point to the importance of spillover effects from global uncertainty and data surprises, when predicting GDP growth in emerging market economies.  相似文献   

10.
    
In this paper we investigate the forecast performance of nonlinear error‐correction models with regime switching. In particular, we focus on threshold and Markov switching error‐correction models, where adjustment towards long‐run equilibrium is nonlinear and discontinuous. Our simulation study reveals that the gains from using a correctly specified nonlinear model can be considerable, especially if disequilibrium adjustment is strong and/or the magnitude of parameter changes is relatively large. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
    
Based on the standard genetic programming (GP) paradigm, we introduce a new probability measure of time series' predictability. It is computed as a ratio of two fitness values (SSE) from GP runs. One value belongs to a subject series, while the other belongs to the same series after it is randomly shuffled. Theoretically, the boundaries of the measure are between zero and 100, where zero characterizes stochastic processes while 100 typifies predictable ones. To evaluate its performance, we first apply it to experimental data. It is then applied to eight Dow Jones stock returns. This measure may reduce model search space and produce more reliable forecast models. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Four options for modeling and forecasting time series data containing increasing seasonal variation are discussed, including data transformations, double seasonal difference models and two kinds of transfer function-type ARIMA models employing seasonal dummy variables. An explanation is given for the typical ARIMA model identification analysis failing to identify double seasonal difference models for this kind of data. A logical process of selecting one option for a particular case is outlined, focusing on issues of linear versus non-linear increasing seasonal variation, and the level of stochastic versus deterministic behavior in a time series. Example models for the various options are presented for six time series, with point forecast and interval forecast comparisons. Interval forecasts from data-transformation models are found to generally be too wide and sometimes illogical in the dependence of their width on the point forecast level. Suspicion that maximum likelihood estimation of ARIMA models leads to excessive indications of unit roots in seasonal moving-average operators is reported.  相似文献   

13.
    
On‐line monitoring of cyclical processes is studied. An important application is early prediction of the next turn in business cycles by an alarm for a turn in a leading index. Three likelihood‐based methods for detection of a turn are compared in detail. One of the methods is based on a hidden Markov model. The two others are based on the theory of statistical surveillance. One of these is free from parametric assumptions of the curve. Evaluations are made of the effect of different specifications of the curve and the transitions. The methods are made comparable by alarm limits, which give the same median time to the first false alarm, but also other approaches for comparability are discussed. Results are given on the expected delay time to a correct alarm, the probability of detection of a turning point within a specified time, and the predictive value of an alarm. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
    
The specification choices of vector autoregressions (VARs) in forecasting are often not straightforward, as they are complicated by various factors. To deal with model uncertainty and better utilize multiple VARs, this paper adopts the dynamic model averaging/selection (DMA/DMS) algorithm, in which forecasting models are updated and switch over time in a Bayesian manner. In an empirical application to a pool of Bayesian VAR (BVAR) models whose specifications include level and difference, along with differing lag lengths, we demonstrate that specification‐switching VARs are flexible and powerful forecast tools that yield good performance. In particular, they beat the overall best BVAR in most cases and are comparable to or better than the individual best models (for each combination of variable, forecast horizon, and evaluation metrics) for medium‐ and long‐horizon forecasts. We also examine several extensions in which forecast model pools consist of additional individual models in partial differences as well as all level/difference models, and/or time variations in VAR innovations are allowed, and discuss the potential advantages and disadvantages of such specification choices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper we investigate the impact of data revisions on forecasting and model selection procedures. A linear ARMA model and nonlinear SETAR model are considered in this study. Two Canadian macroeconomic time series have been analyzed: the real‐time monetary aggregate M3 (1977–2000) and residential mortgage credit (1975–1998). The forecasting method we use is multi‐step‐ahead non‐adaptive forecasting. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
    
Dynamic model averaging (DMA) is used extensively for the purpose of economic forecasting. This study extends the framework of DMA by introducing adaptive learning from model space. In the conventional DMA framework all models are estimated independently and hence the information of the other models is left unexploited. In order to exploit the information in the estimation of the individual time‐varying parameter models, this paper proposes not only to average over the forecasts but, in addition, also to dynamically average over the time‐varying parameters. This is done by approximating the mixture of individual posteriors with a single posterior, which is then used in the upcoming period as the prior for each of the individual models. The relevance of this extension is illustrated in three empirical examples involving forecasting US inflation, US consumption expenditures, and forecasting of five major US exchange rate returns. In all applications adaptive learning from model space delivers improvements in out‐of‐sample forecasting performance.  相似文献   

17.
    
A Bayesian structural model with two components is proposed to forecast the occurrence of algal blooms, multivariate mean‐reverting diffusion process (MMRD), and a binary probit model with latent Markov regime‐switching process (BPMRS). The model has three features: (a) forecast of the occurrence probability of algal bloom is directly based on oceanographic parameters, not the forecasting of special indicators in traditional approaches, such as phytoplankton or chlorophyll‐a; (b) augmentation of daily oceanographic parameters from the data collected every 2 weeks is based on MMRD. The proposed method solves the problem of unavailability of daily oceanographic parameters in practice; (c) BPMRS captures the unobservable factors which affect algal bloom occurrence and therefore improve forecast accuracy. We use panel data collected in Tolo Harbour, Hong Kong, to validate the model. The model demonstrates good forecasting for out‐of‐sample rolling forecasts, especially for algal bloom appearing for a longer period, which severely damages fisheries and the marine environment.  相似文献   

18.
    
A modeling approach to real‐time forecasting that allows for data revisions is shown. In this approach, an observed time series is decomposed into stochastic trend, data revision, and observation noise in real time. It is assumed that the stochastic trend is defined such that its first difference is specified as an AR model, and that the data revision, obtained only for the latest part of the time series, is also specified as an AR model. The proposed method is applicable to the data set with one vintage. Empirical applications to real‐time forecasting of quarterly time series of US real GDP and its eight components are shown to illustrate the usefulness of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
    
A common explanation for the inability of the monetary model to beat the random walk in forecasting future exchange rates is that conventional time series tests may have low power, and that panel data should generate more powerful tests. This paper provides an extensive evaluation of this power argument to the use of panel data in the forecasting context. In particular, by using simulations it is shown that although pooling of the individual prediction tests can lead to substantial power gains, pooling only the parameters of the forecasting equation, as has been suggested in the previous literature, does not seem to generate more powerful tests. The simulation results are illustrated through an empirical application. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the forecasting ability of unobserved component models, when compared with the standard ARIMA univariate approach. A forecasting exercise is carried out with each method, using monthly time series of automobile sales in Spain. The accuracy of the different methods is assessed by comparing several measures of forecasting performance based on the out-of-sample predictions for various horizons, as well as different assumptions on the models’ parameters. Overall there seems little to choose between the methods in forecasting performance terms but the recursive unobserved component models provide greater flexibility for adaptive applications. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号