首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Value at risk (VaR) is a risk measure widely used by financial institutions in allocating risk. VaR forecast estimation involves the conditional evaluation of quantiles based on the currently available information. Recent advances in VaR evaluation incorporate a proxy for conditional variance, yielding the conditional autoregressive VaR (CAViaR) models. However, early work in finance literature has shown that the introduction of power transformations has resulted in improvements in volatility forecasting. Having a direct association between volatility and conditional VaR, we adopt power-transformed CAViaR models. We investigate whether the flexible conditional VaR dynamics associated with power-transformed CAViaR models can result in better forecasting results than those assumed by the nontransformed CAViaR models. Estimation in CAViaR models is based on an early-rejection Markov chain Monte Carlo algorithm. We illustrate our forecasting evaluation results using simulated and financial daily return data series. The results demonstrate that there is strong evidence that supports the use of power-transformed CAViaR models when forecasting VaR.  相似文献   

2.
Value‐at‐risk (VaR) is a standard measure of market risk in financial markets. This paper proposes a novel, adaptive and efficient method to forecast both volatility and VaR. Extending existing exponential smoothing as well as GARCH formulations, the method is motivated from an asymmetric Laplace distribution, where skewness and heavy tails in return distributions, and their potentially time‐varying nature, are taken into account. The proposed volatility equation also involves novel time‐varying dynamics. Back‐testing results illustrate that the proposed method offers a viable, and more accurate, though conservative, improvement in forecasting VaR compared to a range of popular alternatives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper assesses the informational content of alternative realized volatility estimators, daily range and implied volatility in multi‐period out‐of‐sample Value‐at‐Risk (VaR) predictions. We use the recently proposed Realized GARCH model combined with the skewed Student's t distribution for the innovations process and a Monte Carlo simulation approach in order to produce the multi‐period VaR estimates. Our empirical findings, based on the S&P 500 stock index, indicate that almost all realized and implied volatility measures can produce statistically and regulatory precise VaR forecasts across forecasting horizons, with the implied volatility being especially accurate in monthly VaR forecasts. The daily range produces inferior forecasting results in terms of regulatory accuracy and Basel II compliance. However, robust realized volatility measures, which are immune against microstructure noise bias or price jumps, generate superior VaR estimates in terms of capital efficiency, as they minimize the opportunity cost of capital and the Basel II regulatory capital. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This paper adopts the backtesting criteria of the Basle Committee to compare the performance of a number of simple Value‐at‐Risk (VaR) models. These criteria provide a new standard on forecasting accuracy. Currently central banks in major money centres, under the auspices of the Basle Committee of the Bank of International settlement, adopt the VaR system to evaluate the market risk of their supervised banks. Banks are required to report VaRs to bank regulators with their internal models. These models must comply with Basle's backtesting criteria. If a bank fails the VaR backtesting, higher capital requirements will be imposed. VaR is a function of volatility forecasts. Past studies mostly conclude that ARCH and GARCH models provide better volatility forecasts. However, this paper finds that ARCH‐ and GARCH‐based VaR models consistently fail to meet Basle's backtesting criteria. These findings suggest that the use of ARCH‐ and GARCH‐based models to forecast their VaRs is not a reliable way to manage a bank's market risk. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
This article proposes intraday high‐frequency risk (HFR) measures for market risk in the case of irregularly spaced high‐frequency data. In this context, we distinguish three concepts of value‐at‐risk (VaR): the total VaR, the marginal (or per‐time‐unit) VaR and the instantaneous VaR. Since the market risk is obviously related to the duration between two consecutive trades, these measures are completed with a duration risk measure, i.e. the time‐at‐risk (TaR). We propose a forecasting procedure for VaR and TaR for each trade or other market microstructure event. Subsequently, we perform a backtesting procedure specifically designed to assess the validity of the VaR and TaR forecasts on irregularly spaced data. The performance of the HFR measure is illustrated in an empirical application for two stocks (Bank of America and Microsoft) and an exchange‐traded fund based on Standard & Poor's 500 index. We show that the intraday HFR forecasts capture accurately the volatility and duration dynamics for these three assets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This paper proposes value‐at risk (VaR) estimation methods that are a synthesis of conditional autoregressive value at risk (CAViaR) time series models and implied volatility. The appeal of this proposal is that it merges information from the historical time series and the different information supplied by the market's expectation of risk. Forecast‐combining methods, with weights estimated using quantile regression, are considered. We also investigate plugging implied volatility into the CAViaR models—a procedure that has not been considered in the VaR area so far. Results for daily index returns indicate that the newly proposed methods are comparable or superior to individual methods, such as the standard CAViaR models and quantiles constructed from implied volatility and the empirical distribution of standardised residuals. We find that the implied volatility has more explanatory power as the focus moves further out into the left tail of the conditional distribution of S&P 500 daily returns. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
We transform financial return series into its frequency and time domain via wavelet decomposition to separate short‐run noise from long‐run trends and assess the relevance of each frequency to value‐at‐risk (VaR) forecast. Furthermore, we analyze financial assets in calm and turmoil market times and show that daily 95% VaR forecasts are mainly driven by the volatility that is captured by the first scales comprising the short‐run information, whereas more timescales are needed to adequately forecast 99% VaR. As a result, individual timescales linked via copulas outperform classical parametric VaR approaches that incorporate all information available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Value‐at‐risk (VaR) forecasting via a computational Bayesian framework is considered. A range of parametric models is compared, including standard, threshold nonlinear and Markov switching generalized autoregressive conditional heteroskedasticity (GARCH) specifications, plus standard and nonlinear stochastic volatility models, most considering four error probability distributions: Gaussian, Student‐t, skewed‐t and generalized error distribution. Adaptive Markov chain Monte Carlo methods are employed in estimation and forecasting. A portfolio of four Asia–Pacific stock markets is considered. Two forecasting periods are evaluated in light of the recent global financial crisis. Results reveal that: (i) GARCH models outperformed stochastic volatility models in almost all cases; (ii) asymmetric volatility models were clearly favoured pre crisis, while at the 1% level during and post crisis, for a 1‐day horizon, models with skewed‐t errors ranked best, while integrated GARCH models were favoured at the 5% level; (iii) all models forecast VaR less accurately and anti‐conservatively post crisis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Accurate modelling of volatility (or risk) is important in finance, particularly as it relates to the modelling and forecasting of value‐at‐risk (VaR) thresholds. As financial applications typically deal with a portfolio of assets and risk, there are several multivariate GARCH models which specify the risk of one asset as depending on its own past as well as the past behaviour of other assets. Multivariate effects, whereby the risk of a given asset depends on the previous risk of any other asset, are termed spillover effects. In this paper we analyse the importance of considering spillover effects when forecasting financial volatility. The forecasting performance of the VARMA‐GARCH model of Ling and McAleer (2003), which includes spillover effects from all assets, the CCC model of Bollerslev (1990), which includes no spillovers, and a new Portfolio Spillover GARCH (PS‐GARCH) model, which accommodates aggregate spillovers parsimoniously and hence avoids the so‐called curse of dimensionality, are compared using a VaR example for a portfolio containing four international stock market indices. The empirical results suggest that spillover effects are statistically significant. However, the VaR threshold forecasts are generally found to be insensitive to the inclusion of spillover effects in any of the multivariate models considered. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This paper provides clear‐cut evidence that the out‐of‐sample VaR (value‐at‐risk) forecasting performance of alternative parametric volatility models, like EGARCH (exponential general autoregressive conditional heteroskedasticity) or GARCH, and Markov regime‐switching models, can be considerably improved if they are combined with skewed distributions of asset return innovations. The performance of these models is found to be similar to that of the EVT (extreme value theory) approach. The performance of the latter approach can also be improved if asset return innovations are assumed to be skewed distributed. The performance of the Markov regime‐switching model is considerably improved if this model allows for EGARCH effects, for all different volatility regimes considered. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The variance of a portfolio can be forecast using a single index model or the covariance matrix of the portfolio. Using univariate and multivariate conditional volatility models, this paper evaluates the performance of the single index and portfolio models in forecasting value‐at‐risk (VaR) thresholds of a portfolio. Likelihood ratio tests of unconditional coverage, independence and conditional coverage of the VaR forecasts suggest that the single‐index model leads to excessive and often serially dependent violations, while the portfolio model leads to too few violations. The single‐index model also leads to lower daily Basel Accord capital charges. The univariate models which display correct conditional coverage lead to higher capital charges than models which lead to too many violations. Overall, the Basel Accord penalties appear to be too lenient and favour models which have too many violations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A risk management strategy designed to be robust to the global financial crisis (GFC), in the sense of selecting a value‐at‐risk (VaR) forecast that combines the forecasts of different VaR models, was proposed by McAleer and coworkers in 2010. The robust forecast is based on the median of the point VaR forecasts of a set of conditional volatility models. Such a risk management strategy is robust to the GFC in the sense that, while maintaining the same risk management strategy before, during and after a financial crisis, it will lead to comparatively low daily capital charges and violation penalties for the entire period. This paper presents evidence to support the claim that the median point forecast of VaR is generally GFC robust. We investigate the performance of a variety of single and combined VaR forecasts in terms of daily capital requirements and violation penalties under the Basel II Accord, as well as other criteria. In the empirical analysis we choose several major indexes, namely French CAC, German DAX, US Dow Jones, UK FTSE100, Hong Kong Hang Seng, Spanish Ibex 35, Japanese Nikkei, Swiss SMI and US S&P 500. The GARCH, EGARCH, GJR and RiskMetrics models as well as several other strategies, are used in the comparison. Backtesting is performed on each of these indexes using the Basel II Accord regulations for 2008–10 to examine the performance of the median strategy in terms of the number of violations and daily capital charges, among other criteria. The median is shown to be a profitable and safe strategy for risk management, both in calm and turbulent periods, as it provides a reasonable number of violations and daily capital charges. The median also performs well when both total losses and the asymmetric linear tick loss function are considered Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In this study we propose several new variables, such as continuous realized semi‐variance and signed jump variations including jump tests, and construct a new heterogeneous autoregressive model for realized volatility models to investigate the impacts that those new variables have on forecasting oil price volatility. In‐sample results indicate that past negative returns have greater effects on future volatility than that of positive returns, and our new signed jump variations have a significantly negative influence on the future volatility. Out‐of‐sample empirical results with several robust checks demonstrate that our proposed models can not only obtain better performance in forecasting volatility but also garner larger economic values than can the existing models discussed in this paper.  相似文献   

14.
This paper examines the information content of implied volatility for crude oil options as it relates to future realized volatility. Using data for the period 1996 to 2011 we find that implied volatility is an effective predictor of the month‐ahead realized volatility. We show that implied volatility subsumes the information content of contemporaneous volatility, and it contains incremental information on future volatility after controlling for contemporaneous volatility. Furthermore, incorporating risk‐neutral skewness, and especially kurtosis, improves the forecasting of realized volatility. Overall, the association between implied volatility and month‐ahead realized volatility is consistent with evidence documented for other asset classes, leading us to conclude that implied volatility serves as a reasonable proxy for expected volatility. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper proposes a new mixture GARCH model with a dynamic mixture proportion. The mixture Gaussian distribution of the error can vary from time to time. The Bayesian Information Criterion and the EM algorithm are used to estimate the number of parameters as well as the model parameters and their standard errors. The new model is applied to the S&P500 Index and Hang Seng Index and compared with GARCH models with Gaussian error and Student's t error. The result shows that the IGARCH effect in these index returns could be the result of the mixture of one stationary volatility component with another non‐stationary volatility component. The VaR based on the new model performs better than traditional GARCH‐based VaRs, especially in unstable stock markets. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, an optimized multivariate singular spectrum analysis (MSSA) approach is proposed to find leading indicators of cross‐industry relations between 24 monthly, seasonally unadjusted industrial production (IP) series for German, French, and UK economies. Both recurrent and vector forecasting algorithms of horizontal MSSA (HMSSA) are considered. The results from the proposed multivariate approach are compared with those obtained via the optimized univariate singular spectrum analysis (SSA) forecasting algorithm to determine the statistical significance of each outcome. The data are rigorously tested for normality, seasonal unit root hypothesis, and structural breaks. The results are presented such that users can not only identify the most appropriate model based on the aim of the analysis, but also easily identify the leading indicators for each IP variable in each country. Our findings show that, for all three countries, forecasts from the proposed MSSA algorithm outperform the optimized SSA algorithm in over 70% of cases. Accordingly, this new approach succeeds in identifying leading indicators and is a viable option for selecting the SSA choices L and r, which minimizes a loss function.  相似文献   

17.
This study investigates the forecasting performance of the GARCH(1,1) model by adding an effective covariate. Based on the assumption that many volatility predictors are available to help forecast the volatility of a target variable, this study shows how to construct a covariate from these predictors and plug it into the GARCH(1,1) model. This study presents a method of building a covariate such that the covariate contains the maximum possible amount of predictor information of the predictors for forecasting volatility. The loading of the covariate constructed by the proposed method is simply the eigenvector of a matrix. The proposed method enjoys the advantages of easy implementation and interpretation. Simulations and empirical analysis verify that the proposed method performs better than other methods for forecasting the volatility, and the results are quite robust to model misspecification. Specifically, the proposed method reduces the mean square error of the GARCH(1,1) model by 30% for forecasting the volatility of S&P 500 Index. The proposed method is also useful in improving the volatility forecasting of several GARCH‐family models and for forecasting the value‐at‐risk. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Value‐at‐risk (VaR) forecasting generally relies on a parametric density function of portfolio returns that ignores higher moments or assumes them constant. In this paper, we propose a simple approach to forecasting of a portfolio VaR. We employ the Gram‐Charlier expansion (GCE) augmenting the standard normal distribution with the first four moments, which are allowed to vary over time. In an extensive empirical study, we compare the GCE approach to other models of VaR forecasting and conclude that it provides accurate and robust estimates of the realized VaR. In spite of its simplicity, on our dataset GCE outperforms other estimates that are generated by both constant and time‐varying higher‐moments models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper examines the long‐run relationship between implied and realised volatility for a sample of 16 FTSE‐100 stocks. We find strong evidence of long‐memory, fractional integration in equity volatility and show that this long‐memory characteristic is not an outcome of structural breaks experienced during the sample period. Fractional cointegration between the implied and realised volatility is shown using recently developed rank cointegration tests by Robinson and Yajima (2002). The predictive ability of individual equity options is also examined and composite implied volatility estimates are shown to contain information on future idiosyncratic or stock‐specific risk that is not captured using popular statistical approaches. Implied volatilities on individual UK equities are thus closely related to realised volatility and are an effective forecasting method particularly over medium forecasting horizons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The increase in oil price volatility in recent years has raised the importance of forecasting it accurately for valuing and hedging investments. The paper models and forecasts the crude oil exchange‐traded funds (ETF) volatility index, which has been used in the last years as an important alternative measure to track and analyze the volatility of future oil prices. Analysis of the oil volatility index suggests that it presents features similar to those of the daily market volatility index, such as long memory, which is modeled using well‐known heterogeneous autoregressive (HAR) specifications and new extensions that are based on net and scaled measures of oil price changes. The aim is to improve the forecasting performance of the traditional HAR models by including predictors that capture the impact of oil price changes on the economy. The performance of the new proposals and benchmarks is evaluated with the model confidence set (MCS) and the Generalized‐AutoContouR (G‐ACR) tests in terms of point forecasts and density forecasting, respectively. We find that including the leverage in the conditional mean or variance of the basic HAR model increases its predictive ability. Furthermore, when considering density forecasting, the best models are a conditional heteroskedastic HAR model that includes a scaled measure of oil price changes, and a HAR model with errors following an exponential generalized autoregressive conditional heteroskedasticity specification. In both cases, we consider a flexible distribution for the errors of the conditional heteroskedastic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号