首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
We present and apply singular spectrum analysis (SSA), a relatively new, non‐parametric and data‐driven method for signal extraction (trends, seasonal and business cycle components) and forecasting of UK tourism income. Our results show that SSA slightly outperforms SARIMA and time‐varying‐parameter state space models in terms of root mean square error, mean absolute error and mean absolute percentage error forecasting criteria. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
    
This paper compares daily exchange rate value at risk estimates derived from econometric models with those implied by the prices of traded options. Univariate and multivariate GARCH models are employed in parallel with the simple historical and exponentially weighted moving average methods. Overall, we find that during periods of stability, the implied model tends to overestimate value at risk, hence over‐allocating capital. However, during turbulent periods, it is less responsive than the GARCH‐type models, resulting in an under‐allocation of capital and a greater number of failures. Hence our main conclusion, which has important implications for risk management, is that market expectations of future volatility and correlation, as determined from the prices of traded options, may not be optimal tools for determining value at risk. Therefore, alternative models for estimating volatility should be sought. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
    
The leverage effect—the correlation between an asset's return and its volatility—has played a key role in forecasting and understanding volatility and risk. While it is a long standing consensus that leverage effects exist and improve forecasts, empirical evidence puzzlingly does not show that this effect exists for many individual stocks, mischaracterizing risk, and therefore leading to poor predictive performance. We examine this puzzle, with the goal to improve density forecasts, by relaxing the assumption of linearity of the leverage effect. Nonlinear generalizations of the leverage effect are proposed within the Bayesian stochastic volatility framework in order to capture flexible leverage structures. Efficient Bayesian sequential computation is developed and implemented to estimate this effect in a practical, on-line manner. Examining 615 stocks that comprise the S&P500 and Nikkei 225, we find that our proposed nonlinear leverage effect model improves predictive performances for 89% of all stocks compared to the conventional stochastic volatility model.  相似文献   

4.
    
Reliable correlation forecasts are of paramount importance in modern risk management systems. A plethora of correlation forecasting models have been proposed in the open literature, yet their impact on the accuracy of value‐at‐risk calculations has not been explicitly investigated. In this paper, traditional and modern correlation forecasting techniques are compared using standard statistical and risk management loss functions. Three portfolios consisting of stocks, bonds and currencies are considered. We find that GARCH models can better account for the correlation's dynamic structure in the stock and bond portfolios. On the other hand, simpler specifications such as the historical mean model or simple moving average models are better suited for the currency portfolio. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
    
This paper proposes value‐at risk (VaR) estimation methods that are a synthesis of conditional autoregressive value at risk (CAViaR) time series models and implied volatility. The appeal of this proposal is that it merges information from the historical time series and the different information supplied by the market's expectation of risk. Forecast‐combining methods, with weights estimated using quantile regression, are considered. We also investigate plugging implied volatility into the CAViaR models—a procedure that has not been considered in the VaR area so far. Results for daily index returns indicate that the newly proposed methods are comparable or superior to individual methods, such as the standard CAViaR models and quantiles constructed from implied volatility and the empirical distribution of standardised residuals. We find that the implied volatility has more explanatory power as the focus moves further out into the left tail of the conditional distribution of S&P 500 daily returns. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
    
In recent years the singular spectrum analysis (SSA) technique has been further developed and applied to many practical problems. The aim of this research is to extend and apply the SSA method, using the UK Industrial Production series. The performance of the SSA and multivariate SSA (MSSA) techniques was assessed by applying it to eight series measuring the monthly seasonally unadjusted industrial production for the main sectors of the UK economy. The results are compared with those obtained using the autoregressive integrated moving average and vector autoregressive models. We also develop the concept of causal relationship between two time series based on the SSA techniques. We introduce several criteria which characterize this causality. The criteria and tests are based on the forecasting accuracy and predictability of the direction of change. The proposed tests are then applied and examined using the UK industrial production series. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
    
Accurate modelling of volatility (or risk) is important in finance, particularly as it relates to the modelling and forecasting of value‐at‐risk (VaR) thresholds. As financial applications typically deal with a portfolio of assets and risk, there are several multivariate GARCH models which specify the risk of one asset as depending on its own past as well as the past behaviour of other assets. Multivariate effects, whereby the risk of a given asset depends on the previous risk of any other asset, are termed spillover effects. In this paper we analyse the importance of considering spillover effects when forecasting financial volatility. The forecasting performance of the VARMA‐GARCH model of Ling and McAleer (2003), which includes spillover effects from all assets, the CCC model of Bollerslev (1990), which includes no spillovers, and a new Portfolio Spillover GARCH (PS‐GARCH) model, which accommodates aggregate spillovers parsimoniously and hence avoids the so‐called curse of dimensionality, are compared using a VaR example for a portfolio containing four international stock market indices. The empirical results suggest that spillover effects are statistically significant. However, the VaR threshold forecasts are generally found to be insensitive to the inclusion of spillover effects in any of the multivariate models considered. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
    
In this article we propose an extension of singular spectrum analysis for interval-valued time series. The proposed methods can be used to decompose and forecast the dynamics governing a set-valued stochastic process. The resulting components on which the interval time series is decomposed can be understood as interval trendlines, cycles, or noise. Forecasting can be conducted through a linear recurrent method, and we devised generalizations of the decomposition method for the multivariate setting. The performance of the proposed methods is showcased in a simulation study. We apply the proposed methods so to track the dynamics governing the Argentina Stock Market (MERVAL) in real time, in a case study over a period of turbulence that led to discussions of the government of Argentina with the International Monetary Fund.  相似文献   

9.
    
We propose a method approach. We use six international stock price indices and three hypothetical portfolios formed by these indices. The sample was observed daily from 1 January 1996 to 31 December 2006. Confirmed by the failure rates and backtesting developed by Kupiec (Technique for verifying the accuracy of risk measurement models. Journal of Derivatives 1995; 3 : 73–84) and Christoffersen (Evaluating interval forecasts. International Economic Review 1998; 39 : 841–862), the empirical results show that our method can considerably improve the estimation accuracy of value‐at‐risk. Thus the study establishes an effective alternative model for risk prediction and hence also provides a reliable tool for the management of portfolios. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
    
Value at risk (VaR) is a risk measure widely used by financial institutions in allocating risk. VaR forecast estimation involves the conditional evaluation of quantiles based on the currently available information. Recent advances in VaR evaluation incorporate a proxy for conditional variance, yielding the conditional autoregressive VaR (CAViaR) models. However, early work in finance literature has shown that the introduction of power transformations has resulted in improvements in volatility forecasting. Having a direct association between volatility and conditional VaR, we adopt power-transformed CAViaR models. We investigate whether the flexible conditional VaR dynamics associated with power-transformed CAViaR models can result in better forecasting results than those assumed by the nontransformed CAViaR models. Estimation in CAViaR models is based on an early-rejection Markov chain Monte Carlo algorithm. We illustrate our forecasting evaluation results using simulated and financial daily return data series. The results demonstrate that there is strong evidence that supports the use of power-transformed CAViaR models when forecasting VaR.  相似文献   

11.
    
In this paper, an optimized multivariate singular spectrum analysis (MSSA) approach is proposed to find leading indicators of cross‐industry relations between 24 monthly, seasonally unadjusted industrial production (IP) series for German, French, and UK economies. Both recurrent and vector forecasting algorithms of horizontal MSSA (HMSSA) are considered. The results from the proposed multivariate approach are compared with those obtained via the optimized univariate singular spectrum analysis (SSA) forecasting algorithm to determine the statistical significance of each outcome. The data are rigorously tested for normality, seasonal unit root hypothesis, and structural breaks. The results are presented such that users can not only identify the most appropriate model based on the aim of the analysis, but also easily identify the leading indicators for each IP variable in each country. Our findings show that, for all three countries, forecasts from the proposed MSSA algorithm outperform the optimized SSA algorithm in over 70% of cases. Accordingly, this new approach succeeds in identifying leading indicators and is a viable option for selecting the SSA choices L and r, which minimizes a loss function.  相似文献   

12.
    
In this paper we forecast daily returns of crypto‐currencies using a wide variety of different econometric models. To capture salient features commonly observed in financial time series like rapid changes in the conditional variance, non‐normality of the measurement errors and sharply increasing trends, we develop a time‐varying parameter VAR with t‐distributed measurement errors and stochastic volatility. To control for overparametrization, we rely on the Bayesian literature on shrinkage priors, which enables us to shrink coefficients associated with irrelevant predictors and/or perform model specification in a flexible manner. Using around one year of daily data, we perform a real‐time forecasting exercise and investigate whether any of the proposed models is able to outperform the naive random walk benchmark. To assess the economic relevance of the forecasting gains produced by the proposed models we, moreover, run a simple trading exercise.  相似文献   

13.
    
Volatility forecasting from high-frequency data plays a crucial role in many financial fields, such as risk management, option pricing, and portfolio management. Many existing statistical models could better describe and forecast the characteristics of volatility, whereas they do not simultaneously account for the long-term memory of volatility, the nonlinear characteristics of high-frequency data, and technical index information during the modeling phase. The purpose of this paper is to use the prediction advantage of deep learning long short-term memory (LSTM) model to predict the volatility fusing three classes of information, that is, high frequency realized volatility (H), technical indicators (I), and the parameters of generalized autoregression conditional heteroskedasticity(GARCH), heterogeneous autoregressive (HAR), and c, resulting in a novel LSTM-HIT model to forecast realized volatility. We employ the extreme value theory (EVT) of a semiparametric method to estimate the quantile of standardized return and construct the LSTM-HIT-EVT model to forecast the value at risk (VaR). Empirical results show that the LSTM-HIT model provides the most accurate volatility forecast among the various considered models and that the LSTM-HIT-EVT model yields forecasts more accurate than other VaR models.  相似文献   

14.
    
This paper investigates inference and volatility forecasting using a Markov switching heteroscedastic model with a fat‐tailed error distribution to analyze asymmetric effects on both the conditional mean and conditional volatility of financial time series. The motivation for extending the Markov switching GARCH model, previously developed to capture mean asymmetry, is that the switching variable, assumed to be a first‐order Markov process, is unobserved. The proposed model extends this work to incorporate Markov switching in the mean and variance simultaneously. Parameter estimation and inference are performed in a Bayesian framework via a Markov chain Monte Carlo scheme. We compare competing models using Bayesian forecasting in a comparative value‐at‐risk study. The proposed methods are illustrated using both simulations and eight international stock market return series. The results generally favor the proposed double Markov switching GARCH model with an exogenous variable. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
16.
    
Recent research has suggested that forecast evaluation on the basis of standard statistical loss functions could prefer models which are sub‐optimal when used in a practical setting. This paper explores a number of statistical models for predicting the daily volatility of several key UK financial time series. The out‐of‐sample forecasting performance of various linear and GARCH‐type models of volatility are compared with forecasts derived from a multivariate approach. The forecasts are evaluated using traditional metrics, such as mean squared error, and also by how adequately they perform in a modern risk management setting. We find that the relative accuracies of the various methods are highly sensitive to the measure used to evaluate them. Such results have implications for any econometric time series forecasts which are subsequently employed in financial decision making. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
    
This paper develops a dynamic factor model that uses euro area country-specific information on output and inflation to estimate an area-wide measure of the output gap. Our model assumes that output and inflation can be decomposed into country-specific stochastic trends and a common cyclical component. Comovement in the trends is introduced by imposing a factor structure on the shocks to the latent states. We moreover introduce flexible stochastic volatility specifications to control for heteroscedasticity in the measurement errors and innovations to the latent states. Carefully specified shrinkage priors allow for pushing the model towards a homoscedastic specification, if supported by the data. Our measure of the output gap closely tracks other commonly adopted measures, with small differences in magnitudes and timing. To assess whether the model-based output gap helps in forecasting inflation, we perform an out-of-sample forecasting exercise. The findings indicate that our approach yields superior inflation forecasts, both in terms of point and density predictions.  相似文献   

18.
    
This paper addresses the issue of freight rate risk measurement via value at risk (VaR) and forecast combination methodologies while focusing on detailed performance evaluation. We contribute to the literature in three ways: First, we reevaluate the performance of popular VaR estimation methods on freight rates amid the adverse economic consequences of the recent financial and sovereign debt crisis. Second, we provide a detailed and extensive backtesting and evaluation methodology. Last, we propose a forecast combination approach for estimating VaR. Our findings suggest that our combination methods produce more accurate estimates for all the sectors under scrutiny, while in some cases they may be viewed as conservative since they tend to overestimate nominal VaR.  相似文献   

19.
This article proposes intraday high‐frequency risk (HFR) measures for market risk in the case of irregularly spaced high‐frequency data. In this context, we distinguish three concepts of value‐at‐risk (VaR): the total VaR, the marginal (or per‐time‐unit) VaR and the instantaneous VaR. Since the market risk is obviously related to the duration between two consecutive trades, these measures are completed with a duration risk measure, i.e. the time‐at‐risk (TaR). We propose a forecasting procedure for VaR and TaR for each trade or other market microstructure event. Subsequently, we perform a backtesting procedure specifically designed to assess the validity of the VaR and TaR forecasts on irregularly spaced data. The performance of the HFR measure is illustrated in an empirical application for two stocks (Bank of America and Microsoft) and an exchange‐traded fund based on Standard & Poor's 500 index. We show that the intraday HFR forecasts capture accurately the volatility and duration dynamics for these three assets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
    
This paper uses high‐frequency continuous intraday electricity price data from the EPEX market to estimate and forecast realized volatility. Three different jump tests are used to break down the variation into jump and continuous components using quadratic variation theory. Several heterogeneous autoregressive models are then estimated for the logarithmic and standard deviation transformations. Generalized autoregressive conditional heteroskedasticity (GARCH) structures are included in the error terms of the models when evidence of conditional heteroskedasticity is found. Model selection is based on various out‐of‐sample criteria. Results show that decomposition of realized volatility is important for forecasting and that the decision whether to include GARCH‐type innovations might depend on the transformation selected. Finally, results are sensitive to the jump test used in the case of the standard deviation transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号