共查询到20条相似文献,搜索用时 15 毫秒
1.
关联规则挖掘算法研究 总被引:1,自引:0,他引:1
详细研究了关联规则数据挖掘,分析了存在的问题和不足,提出了一种频繁项集增量算法,用于对Apriori算法进行改进.实验表明,改进算法在运行效率上要比Apriori算法快一个数量级. 相似文献
2.
提出了基于数组的关联规则挖掘算法,该算法只扫描一次数据库,将数据库中的数据存于数组中,提高了内存的利用效率,同时也提高了算法效率. 相似文献
3.
关联规则的挖掘往往会产生大量的关联规则,"规则爆炸"的问题会使用户很难得到自己所需要的重要信息.极大布尔关联规则集因其包含的规则数量少且不丢失规则信息的优点提高了用户分析关联规则结果的效率,且节省了规则存储空间.在分析频繁闭项集、频繁基项集和极大布尔关联规则性质的基础上提出了一种挖掘极大布尔关联规则的算法,利用此算法可以得到极大布尔关联规则集,还通过实例验证了算法的正确性. 相似文献
4.
快速关联规则挖掘算法 总被引:1,自引:0,他引:1
提出了一种新颖的关联规则挖掘算法QAIS,与经典两阶段式关联规则挖掘算法不同的是,它只需扫描一遍事务数据库,不需要生成候选集,并且可以方便的应用在增量式关联规则挖掘算法中,该算法经合成数据验证是有效的.同时针对关联规则生成过程中出现大量冗余规则的问题,还讨论了冗余关联规则去除的问题. 相似文献
5.
6.
频繁项集的挖掘效率是关联规则产生的关键.针对经典Apriori算法的瓶颈,提出一种改进算法,通过数组结构来保存项集信息,只须扫描一遍数据库减少了时间开销.在自连接前进行项目计数,减少参加连接的项集数量,减少了候选项集的数量.通过实例证明,改进算法的效率更高. 相似文献
7.
唐德权 《湖南文理学院学报(自然科学版)》2006,18(3):72-74,79
关联知识挖掘算法中一种广为人知的算法就是Aprior算法,之后所有关联规则挖掘算法的基本思想都是基于频繁项目集发现算法的基础上进行了改进.为了提高关联规则挖掘效率,首先回顾了基于图的关联规则挖掘算法;然后,在此基础上进行了改进,把关联规则挖掘中寻找频繁项集的问题转换为图中寻找完全子图的问题,通过在图中查找完全子图来寻找频繁项集.提出了一种基于图的关联规则挖掘改进算法,并且对原算法和改进的算法从时间和空间的性能进行了比较分析,得出改进的算法是有效可行的.最后从实验结果得出结论GenerateItemsets算法比DGBFIG算法优. 相似文献
8.
9.
本文主要介绍了数据挖掘中的关联规则,分析了关联规则中的主要算法,包括Apriori算法、FP-Growth算法以及CRApriori算法,并且阐述了各种算法的主要特点。 相似文献
10.
数据挖掘中关联规则挖掘算法的改进及其应用 总被引:3,自引:0,他引:3
对数据挖掘技术中经典的关联规则挖掘算法Apriori和AprioriTid进行了分析,针对其中不足,提取两种算法的优点,给出了算法的改进,并在贵州电力综合数据平台中进行了应用分析。 相似文献
11.
基于数据库约简的关联规则挖掘算法 总被引:7,自引:0,他引:7
通过对Apriori算法挖掘过程进行分析,提出了一种基于数据库约简的关联规则挖掘算法.该算法利用每趟挖掘中一些非频繁项集的超集、并集,逐步约简事务数据库中的事务,提高了关联规则的挖掘效率.在这些非频繁项集的基础上建立了数据库约简的定理和推论,并在Apriori算法的基础上设计了ApioriNEW算法.经过对算法进行分析和实验,算法ApioriNEW的挖掘效率比较高.一般情况下,平均可将挖掘效率提高约30%.ApioriNEW算法特别适合大型数据库的关联规则挖掘,已应用在网络故障诊断专家系统的知识获取中. 相似文献
12.
挖掘关联规则Apriori算法的一种改进 总被引:1,自引:0,他引:1
本研究在对Apriori算法分析的基础上,提出了改进的Apriori算法。改进后的算法采用矩阵表示数据库,减少了扫描事物数据库的次数;利用向量运算来实现频繁项集的计数,同时及时地去掉不必要的数据,减少了数据运算,从而提高了算法的运行效率。 相似文献
13.
胡蓉 《湘潭师范学院学报(自然科学版)》2005,27(1):23-24
提高频繁项集挖掘算法的效率一直是数据挖掘领域中关联规则挖掘研究的一个重点。Apriori算法是一种经典的最有影响的挖掘关联规则的算法,该算法虽然能有效地挖掘出关联规则,但是产生的冗余规则多,效率低下。针对数据挖掘的现状及关联规则算法的瓶颈问题,提出一种基于串与运算的关联规则挖掘算法,并对关联规则挖掘的未来研究方向进行了展望。 相似文献
14.
传统的正关联规则主要考虑事务中所列举的项目,负关联规则不仅要考虑事务中所包含的项目,还要考虑事务中所不包含的项目,它包含了非常有价值的信息。本文对负关联规则的相关定义、支持度及置信度的计算方法进行了分析讨论,并讨论了对负关联规则挖掘中出现的矛盾规则问题及利用规则相关性解决矛盾规则问题,最后给出了其挖掘算法及其实现。 相似文献
15.
针对Apriori算法存在多次扫描数据库及产生大量候选项集的缺陷,提出了一种改进算法.该算法只需扫描数据库一次,并将事务变换成二进制存储到数据库,可节省存储空间、提高速度.实验结果表明,改进算法挖掘关联规则的效率有较大提高. 相似文献
16.
提出了一种快速关联规则挖掘算法DPD,算法通过模式分解,在每次遍在中减小模式量和模式长度,动态地减小数据集大小,从而有效减少候选关联规则的产生和计数的费用,提出了基于频繁集lk生成最长项目子集M(k)的FPS算法,DPD算法利用了M(k)进行模式分解,有效克服PD算法在|-Lk|很大时模式分解效率低的缺点,减少由Ck生成Ck 1时的遍历次数。 相似文献
17.
本文介绍了关联规则的概念,并通过一个例子说明了关联规则挖掘的一种算法--Apriori算法,指出了数据挖掘未来研究的重点和方向。 相似文献
18.
从大型事务数据库中发现关联规则是数据挖掘中的一个重要课题,其核心问题是挖掘频繁项集.经典Apriori算法是有效的挖掘频繁项目集的算法.在分析Apriori算法的基础上,提出了一种利用二维数组来代替算法中的哈希树的方法,可以迅速产生二阶频繁项目集,改善了Apriori算法的效率瓶颈,大大提高了算法的执行效率. 相似文献
19.
沈良忠 《温州大学学报(自然科学版)》2009,30(6):25-30
针对关联规则挖掘中传统Apriori算法需要通过多次扫描数据库来发现频繁项集的问题,提出一种基于简单双矩阵的方法来实现频繁项集的发现.该方法仅需要扫描数据库一次,并充分利用项集的出现次数和是否出现逻辑值来获取频繁项集.实验表明,该方法比Apriori算法更高效. 相似文献
20.
基于关联规则挖掘技术,结合销售数据特征,提出了一个基于SQL的多层关联规则挖掘算法,允许用户自定义概念层次.实验结果表明,该算法可行且有效,有良好的用户交互性,能够支持品类管理中高效陈列和促销的应用. 相似文献