首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用修正的各向同性三维分形表面的W-M函数构造隧道掘进机掘进后的隧道粗糙表面;考虑法向支撑载荷作用和岩石在压缩载荷下的失效机制,建立了掘进机撑靴与岩石粗糙表面法向接触刚度模型.研究变载荷工况下,不同粗糙隧道表面特性与掘进机撑靴接触界面刚度特性变化规律.结果表明:岩石的失效对接触刚度特性影响明显,相同的载荷下,岩石的失效会带来接触刚度的减小;当岩石弹性模量相同时,接触刚度随着硬度的增大而增大;当岩石硬度相同时,接触刚度随着弹性模量的增加而减小;随着外部载荷的增加,粗糙表面的接触刚度随之增加,而表面粗糙度的增大会引起界面接触刚度相应减小.  相似文献   

2.
采用修正的各向同性三维分形表面的W M函数构造隧道掘进机掘进后的隧道粗糙表面;考虑法向支撑载荷作用和岩石在压缩载荷下的失效机制,建立了掘进机撑靴与岩石粗糙表面法向接触刚度模型.研究变载荷工况下,不同粗糙隧道表面特性与掘进机撑靴接触界面刚度特性变化规律.结果表明:岩石的失效对接触刚度特性影响明显,相同的载荷下,岩石的失效会带来接触刚度的减小;当岩石弹性模量相同时,接触刚度随着硬度的增大而增大;当岩石硬度相同时,接触刚度随着弹性模量的增加而减小;随着外部载荷的增加,粗糙表面的接触刚度随之增加,而表面粗糙度的增大会引起界面接触刚度相应减小.  相似文献   

3.
粗糙机械结合面的接触刚度研究   总被引:16,自引:7,他引:16  
为准确进行计入粗糙接触界面影响的组合结构动力分析,基于弹塑性理论对具有粗糙表面的长方微元体进行有限元接触分析,给出了根据受力和变形关系计算粗糙表面接触刚度的方法,得到了不同载荷作用下的法向和切向界面接触刚度.计算结果表明:表面形貌造成的接触应力分布不均匀和局部塑性变形导致法向界面接触刚度随着压力的增加先增大后减小,并随着表面粗糙度的增加而降低;切向界面接触刚度随着法向载荷和摩擦系数的增加而增加,随着切向载荷的增加而减小.当切向载荷增加到一定值时,接触界面将由微观滑移转化为宏观滑动,摩擦界面连接失效.  相似文献   

4.
提出了一种包含微凸体接触过程中弹塑性过渡阶段弹性的粗糙表面切向接触刚度模型。现有粗糙表面切向接触刚度模型中只考虑微凸体完全弹性接触阶段的弹性,未考虑弹塑性过渡阶段弹性。根据微凸体变形过程中应满足的连续性条件,微凸体变形过程可以按如下划分:完全弹性阶段、弹塑性过渡阶段(包含三个不同阶段)以及完全塑性阶段,依据分形理论和Hertz接触理论,建立了计入微凸体弹塑性过渡阶段弹性的结合面切向接触刚度模型。分析与试验结果表明:考虑微凸体的弹塑性过渡阶段的切向接触刚度相比与不考虑弹塑性过渡阶段更加的符合实际接触情况。新模型的切向接触刚度随着法向载荷和较软材料的屈服强度与两材料的复合弹性模量的比值的增大而增大,还由于分形粗糙度与切向载荷的增大,该切向接触刚度会减小,并且伴随着分形维数的增大,切向接触刚度先增大后减小,即接触刚度存在一个峰值。此外,当较软材料的屈服强度与两材料的复合弹性模量的比值增大时,刚度峰值所对应的分形维数在减小。  相似文献   

5.
结合面法向动态参数的分形模型   总被引:8,自引:2,他引:8  
为了对结合面法向动态参数进行正确的理论计算,以分形接触理论为基础,建立了结合面法向动态参数的理论分形模型,揭示了接触刚度和接触阻尼与作用在粗糙表面上的法向载荷、粗糙表面材料性能常数,以及分形参数等因素之间的复杂关系,并对该模型进行了数值仿真.仿真结果表明:结合面的实际接触面积仅占名义接触面积的一小部分,降低表面粗糙度或增加法向载荷都将增大实际接触面积;接触刚度和接触阻尼与分形参数之间具有较强的非线性关系,而法向栽荷对接触刚度的影响较为明显,当栽荷增加时,刚度值也随之增大,但对接触阻尼的影响可以忽略.  相似文献   

6.
基于分形接触理论的结合面法向接触参数预估   总被引:3,自引:0,他引:3  
基于分形接触理论,建立了结合面法向接触参数的分形预估模型,通过粗糙表面材料性能参数、法向载荷及粗糙表面的分形参数来预估法向接触刚度和接触阻尼,并对其变化规律进行数值仿真.结果表明:结合面之间的接触处于弹性变形和与塑性变形共存的状态,且小接触点面积的微凸体发生塑性变形,而大接触点面积的微凸体发生弹性变形;法向接触参数与分形参数之间具有较强的非线性关系;同时,法向接触刚度随法向载荷的增大而逐渐增加,但法向载荷对结合面的法向阻尼特性影响较小;仿真结果中极值点的存在,为结合面接触参数的优化设计提供了依据.  相似文献   

7.
基于分形理论及M-B模型,引入微接触点域扩展因子,综合考虑微凸体弹性接触变形、弹塑性接触变形和完全塑性变形,进而考虑微凸体弹塑性变形阶段硬度随其几何形貌的改变而变化,建立对应的结合面法向接触刚度模型。通过软件仿真发现:考虑微凸体硬度随其几何形貌改变后,无量纲接触载荷较将硬度视为定值时要小,且随着分形维数的增大,二者差异在逐渐增大;考虑微凸体硬度随微凸体几何形状改变而变化后,结合面无量纲法向接触刚度相较将硬度视为定值时大;无量纲法向接触刚度随着无量纲接触载荷、分形维数和塑性指数的增大而增大,但随着无量纲特征分形粗糙度的增大而减小。  相似文献   

8.
基于MB接触分形理论、结合面切向接触阻尼耗能机理以及阻尼损耗因子的定义,建立了结合面切向接触等效黏性阻尼的分形模型及其损耗因子模型。所建模型表明,结合面切向接触等效黏性阻尼与结合面法向接触载荷、摩擦系数、材料塑性指数、结合面上的切向动态载荷幅值与法向接触载荷之比(简称切法向载荷比)、结合面分形维数以及分形粗糙度参数之间具有复杂的非线性关系,而结合面切向接触阻尼损耗因子与结合面分形维数和分形粗糙度参数无关,仅与切法向载荷比和摩擦系数有关。模型的仿真结果表明,结合面切向接触阻尼损耗因子随着切法向载荷比的增大而增大,随结合面摩擦系数的增大而减小;结合面切向接触等效黏性阻尼随着结合面法向接触载荷、摩擦系数、材料塑性指数的增大而增大,随着结合面分形粗糙度的增大而减小;结合面切向接触等效黏性阻尼随结合面分形维数的变化规律较为复杂,先随着分形维数的增大而增大,在分形维数值1.65附近出现最大值,而后随着分形维数的增大而减小。  相似文献   

9.
基于Kragelsky-Demkin粗糙接触理论和Iwan迟滞非线性模型,建立了一种考虑界面粗糙度参数的连接界面非线性力学模型。首先建立了连接界面恢复力分布与表面粗糙度参数之间的关系,导出了临界滑移力的分布密度函数;然后结合连续Iwan迟滞非线性唯象模型,导出了连接界面切向载荷与切向相对位移之间的关系,以及界面单位周期能量耗散与切向振荡载荷幅值之间的关系;最后研究了粗糙度参数对界面宏观力学行为的影响。结果表明:建立的模型能够直接反映界面宏观力学响应与表面粗糙度参数之间的关系;连接界面切向恢复力与相对位移之间为非线性关系,切向连接刚度随相对位移增大而减小;激励幅值相同时,表面粗糙度参数越大,则切向连接刚度越大,单位周期的能量耗散越小;当激励幅值不足以引起宏观滑动时,单位周期能量耗散与激励幅值之间为幂函数关系。  相似文献   

10.
新的柔性结合部法向接触刚度和接触阻尼方程   总被引:3,自引:0,他引:3  
以修正分形几何学理论和赫兹法向接触力学方程为基础,推导出了柔性结合部法向接触刚度与阻尼方程。假设峰元顶端的曲率半径为变量,提出了一种全新的求导函数而非偏导函数的求解方法,建立了单峰元与平面接触的法向接触刚度方程。数值模拟表明:峰元承担的法向弹性载荷与其顶端的变形量之间符合非线性幂函数凹弧关系;降低表面粗糙度或增加法向接触载荷都将增大实际接触面积;当表面粗糙轮廓分形维数在较小范围内时,实际接触面积随着表面粗糙轮廓分形维数的增加而增大,而当表面粗糙轮廓分形维数在较大范围内时,实际接触面积随着表面粗糙轮廓分形维数的增加而变小;降低表面粗糙度或增加表面粗糙轮廓分形维数与法向接触载荷皆将增加法向接触刚度;法向接触阻尼随着表面粗糙轮廓分形维数的增加先减小后增大;当表面粗糙轮廓分形维数小于临界值时,法向接触阻尼随着分形粗糙度的增大而增大,而当表面粗糙轮廓分形维数超过转折点时,法向接触阻尼随着分形粗糙度的增大而减小;当法向接触载荷增大时,法向接触阻尼略微减小。  相似文献   

11.
MB模型的修正及应用   总被引:4,自引:3,他引:1  
由于MB模型存在3个缺陷,工程上会引入无法接受的误差.本文修正了MB模型的后两个缺陷.针对第2个缺陷,提出了实际临界接触面积、最小有效分形维数、量纲一的最大有效分形粗糙度参数、最小有效材料特性等术语.根据MB模型和提出的计算术语,对两弹塑性接触粗糙表面的接触行为及界面的静摩擦因数进行了研究.研究结果表明:界面的静摩擦因数首先随分形维数的增加而增加,然后随分形维数的增加而减小;界面的静摩擦因数随分形粗糙度参数的增加而减小,但随材料特性的增加而增加,也随总法向载荷的增加而增加;当分形维数较小或分形粗糙度参数较大或材料特性较小时,静摩擦因数-量纲一的总法向载荷曲线为凸弧.  相似文献   

12.
基于接触界面势垒与摩擦接触面形貌的随机特性,建立了一种新的纳米级粗糙表面滑动摩擦力计算模型;利用该模型对满足严格平稳的同种摩擦副材料纳米级随机粗糙表面的摩擦力进行了数值计算.结果表明:经该模型数值计算得出的平均滑动摩擦力与法向载荷呈线性关系;法向载荷与平均接触界面间隙呈指数关系;在相同界面间隙下,平均法向力与粗糙峰高度分布标准差呈线性关系.计算结果与现有的研究结论相符,证明该模型是有效的、可行的;基于该模型,可根据接触界面的形貌分布参数、材料参数与法向载荷预测出平均滑动摩擦力.  相似文献   

13.
机械固定结合面刚度特性建模   总被引:1,自引:0,他引:1  
针对机械结合面G-W接触模型和M-B接触模型存在的不足,基于分形理论,提出一种能描述2粗糙面接触的配对几何粗糙特性的法向刚度力学模型.该模型在几何尺寸上独立,给出了结合面面压与刚度的解析解,能有效求解结合面配对接触的法向刚度.根据应变能相等的原则,把结合面法向刚度和切向刚度折合成连续体的材料属性,建立了描述结合面特性的虚拟材料模型,试验证明了该方法的有效性.  相似文献   

14.
提出一种新的基于低阶椭圆曲线方程的微凸体法向弹塑性接触刚度模型。进一步基于粗糙表面形貌的Greenwood-Williamson统计模型和微凸体高度分布概率密度函数,推导整个粗糙界面接触刚度和接触载荷表达式,建立粗糙界面接触的总刚度模型,并将模型计算结果与实验测量结果进行对比分析。研究结果表明:该模型考虑粗糙界面的弹性变形、弹塑性变形和完全塑性变形接触状态,且同时满足不同接触状态之间微凸体的接触刚度、接触载荷和接触面积均连续、单调且光滑变化的条件,克服了以往模型存在的接触刚度非连续、非单调的缺点;本文建立的粗糙界面接触刚度模型有效。  相似文献   

15.
基于Kirchhoff薄板理论与Vogit应变假设,用Hamilton原理,得到面内载荷作用下材料物性参数服从幂律分布的功能梯度板动力屈曲控制方程。联合使用分离变量法和试函数法,获得了功能梯度板在满足边界条件下的动力屈曲临界载荷解析表达式和屈曲解。数值计算讨论了功能梯度板的几何尺寸、梯度指数、屈曲模态阶数以及材料构成对临界载荷的影响。结果表明:功能梯度板的动力屈曲临界载荷随临界长度的增大呈指数式下降,随厚度的增大而增大,随梯度指数k的增大而减小,且k值在区间(0,1)内对临界载荷影响较大。动力屈曲临界载荷随构成材料的弹性模量、泊松比以及模态阶数的增大而增大,且弹性模量影响较为明显。面内载荷越大,越容易激发功能梯度板产生高阶屈曲模态。边界条件对功能梯度板的屈曲模态影响较大。  相似文献   

16.
应用改进分形几何理论的结合部切向刚度模型   总被引:4,自引:0,他引:4  
针对现有分形接触理论对2个机械部件粗糙表面相互接触形成的结合部的切向接触刚度分形模型存在违反赫兹法向接触力学的缺陷,以改进分形几何理论为基础、在严格应用赫兹法向接触力学的基础上,推导出结合部总切向接触静弹性条件刚度、总条件法向载荷的分析解。数值仿真表明:结合部的切向接触静弹性刚度随着总法向载荷的增加基本上呈线性增加的态势,随着表面轮廓分形维数的增加而增大,随着分形粗糙度的减小而增大;在恒定法向载荷作用下,最初作用于结合部的切向载荷使得切向接触静弹性刚度最大,该刚度随着切向载荷的增加而减小,随着静摩擦系数的增加而增大;随着法向载荷的增加,法向接触静弹性刚度的增量加大。该结果可为进一步研究粗糙表面的分形特性提供参考。  相似文献   

17.
摘要: 基于粗糙表面微凸体变形的连续性和光滑性原理,研究了在法向载荷逐渐增加时的粗糙表面单个微凸体弹塑性过渡变形机制,提出了考虑弹塑性过渡变形机制的结合面微凸体微观接触模型,建立了法向接触载荷和法向接触刚度的数学模型;基于分形几何理论,建立了结合面法向接触刚度的分形模型,并对结合面法向接触刚度进行仿真计算.结果表明:在较小的塑性指数条件下,法向接触载荷与法向接触刚度近似呈线性关系;在较大的塑性指数条件下,法向接触载荷与法向接触刚度呈非线性关系;法向接触刚度随着分形维数和法向接触载荷的增加而增大,随着无量纲分形特征尺度系数的增大而减小;所得结合面法向接触刚度的仿真计算值与铣削加工和磨削加工条件下的实验值较吻合.  相似文献   

18.
将古典赫兹理论与现代Majumdar-Bhushan模型相结合,建立了两圆柱分形接触模型。考虑结合部虚拟材料厚度,以及引入圆柱接触面积比,对两圆柱线高副矩形接触面进行了受力分析。数值仿真表明:圆柱接触面积比不大于1;外接触时圆柱接触面积比小于内接触时;增加总载荷或减小结合部虚拟材料厚度都将增大圆柱接触面积比;外接触时实际接触面积小于内接触时;实际接触面积随着分形粗糙度、材料硬度或结合部虚拟材料厚度的增加而减小;随着分形粗糙度的增加,产生特定实际接触面积所需要的总载荷增加,微凸体变形量增大;对于给定总载荷,当分形维数从1.4增加到1.5时,实际接触面积相应增大,但当分形维数从1.5增加到1.9时,实际接触面积转而减小;内接触时的赫兹应力小于外接触时的赫兹应力。该研究结果可为进一步研究圆柱齿轮传动的齿面接触疲劳强度计算提供参考。  相似文献   

19.
针对以经典Greenwood-Willamson(GW)统计模型为基础建立的结合面法向接触刚度计算模型忽略微凸体基体变形和相互作用而导致的结合面刚度计算值增大的问题,建立了一种综合考虑微凸体基体变形和相互作用的结合面法向接触刚度模型。该模型以GW统计模型计算刚度的方法为基础,根据经典赫兹接触理论和弹性理论,在微凸体的总变形量中引入单个微凸体受法向载荷作用时基体的变形函数和周围区域的变形函数,采用不动点迭代法先后推导出单独考虑微凸体基体变形或相互作用时结合面法向接触载荷和刚度的表达式。对两种变形函数进行叠加给出了含微凸体基体变形和相互作用的结合面法向载荷和刚度的表达式,进而建立了结合面法向接触刚度模型。与GW统计模型进行了对比,仿真结果表明:考虑微凸体基体变形或相互作用的结合面法向接触刚度小于GW统计模型的法向接触刚度,在微凸体高度标准偏差为0.05μm时,最小结合面平均分离距离下考虑基体变形后结合面法向接触刚度下降9.8%,考虑微凸体相互作用后结合面法向接触刚度下降23.2%,此时微凸体相互作用比基体变形对系统的总刚度影响大。随着微凸体高度标准偏差的增大,前述两因素对结合面法向接触刚度...  相似文献   

20.
平面结合面切向接触阻尼分形模型及其仿真   总被引:1,自引:0,他引:1  
基于接触分形理论和结合面接触阻尼耗能机理,以及球体与平面接触时的阻尼耗能理论,建立了平面结合面切向接触阻尼的分形模型,通过数值仿真直观揭示了平面结合面切向接触阻尼耗能与结合面法向载荷以及结合面表面粗糙轮廓分形维数之间的非线性关系.仿真结果表明:平面结合面切向接触阻尼的耗能随着结合面法向载荷的增大而减小;当结合面表面粗糙轮廓分形维数小于等于1.2时,平面结合面切向接触阻尼耗能随结合面表面粗糙轮廓分形维数的增大而增大;当结合面表面粗糙轮廓分形维数大于1.2时,平面结合面切向接触阻尼耗能随结合面表面粗糙轮廓分形维数的增大而减小.仿真结果验证了模型的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号