首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用"铁钛平行分选"工艺对高压辊磨超细碎的-3.2 mm钒钛磁铁矿进行选别实验,研究了强磁选对钛铁矿的分选效果.当磨矿细度为-74μm粒级占80%时,辊压产品选钛给矿的单体解离度较颚破产品高0.58%,辊压产品-19μm+11μm粒级中铁氧化物的单体含量较颚破产品低1.38%.与颚破产品采用"阶段磨矿-阶段分选"工艺相比,"铁钛平行分选"得到的强磁精矿中Ti O2的回收率提高5.11%,-19μm粒级的含量降低2.62%.不同粒级钛铁矿在分选空间中的受力分析表明,当粒度降低时,钛铁矿所受的比阻力急剧增加,而比磁力却有所降低,这增加了钛铁矿颗粒被磁场捕获的难度."铁钛平行分选"能够降低选别过程中微细粒钛铁矿的新生成量,改善钛铁矿的强磁选别效果.  相似文献   

2.
对弓长岭磁铁矿石的高压辊磨和颚式破碎产品分别进行阶段磨矿—阶段磁选—细筛再磨试验,分析了两种破碎方式对弓长岭磁铁矿石磨矿特性和磁选特性的影响。结果表明:高压辊磨工艺适宜的一段磨矿细度为-74μm含量占40%,颚式破碎工艺适宜的一段磨矿细度为-74μm含量占50%,两种破碎工艺适宜的二段磨矿细度均为-74μm含量占85%,最佳的细筛筛孔尺寸为50μm,三段磨矿细度为-45μm含量占80%。高压辊磨机碎磨分选工艺与颚式破碎机碎磨分选工艺相比,精矿品位相近,产率高0.52%,回收率高0.92%。  相似文献   

3.
对攀西钒钛磁铁矿进行了高压辊磨超细碎及其选别试验.当入料d80为155mm时,辊压中料-32mm产率为9105%,-0074mm产率为1529%,P80降低至155mm,边料及闭路循环工艺对粉碎产品粒度特性的影响也非常明显.采用“铁钛平行分选”工艺对高压辊磨超细碎的-32mm攀西钒钛磁铁矿进行了选别试验.结果表明,选铁流程在磨矿细度为-0074mm占45%时,铁精矿Fe品位可达5505%,回收率7064%;选钛流程在-0074mm占80%时,钛精矿TiO2品位4778%,回收率3516%.  相似文献   

4.
攀西钒钛磁铁矿高压辊磨的产品特性   总被引:3,自引:0,他引:3  
对攀西钒钛磁铁矿进行了高压辊磨超细粉碎,分析了不同粉碎工艺对粉碎产品粒度特性的影响,研究了不同粉碎方式下矿石Bond球磨功指数的变化以及微裂纹产生的情况.结果表明:辊面压力的增加使粉碎产品的破碎比增大,粒度分布更加均匀;边料循环量的增加,使粉碎产品粒度变细,但均匀性降低;-3.2 mm分级全闭路循环的粉碎产品与颚式破碎机产品相比细粒级含量明显增加,而且粒度分布更加均匀;高压辊磨机粉碎的钒钛磁铁矿石内部产生了大量的晶内裂纹和解离裂纹,使其Bond球磨功指数(目标粒度0.074 mm)比颚式破碎机的粉碎产品降低14.05%.  相似文献   

5.
破碎方式对紫金山铜金矿石可磨性及浮选的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
针对紫金山铜金矿石,研究不同破碎方式下产品的粒度特性、磨矿动力学特性和浮选特性.结果表明,与常规破碎方式相比,经高压辊磨机粉碎后的物料平均粒径更小,细粒级含量多,高压辊磨机粉碎后的物料更易磨;在现场开路流程和药剂制度下,高压辊磨产品经球磨浮选后粗精矿铜回收率可达到84.68%和86.38%,比常规破碎磨矿浮选工艺粗精矿铜回收率分别提高4.25%和5.95%.与辊面压力为3.5 MPa相比,辊面压力为5.5 MPa时,粉碎后物料平均粒径小,更易磨,粗选精矿的铜回收率可提高1.7%.  相似文献   

6.
对紫金山金铜矿石进行高压辊磨和颚式破碎,然后对2种产品进行分批磨矿试验,基于磨矿动力学原理,借助MATLAB软件分析2种产品磨矿过程中各个粒级的磨矿速度,采用扫描电镜(SEM)对产品表面的微裂纹进行表征,并对磨矿产品的分布特性进行分析。研究结果表明:在磨矿初期,微裂纹是影响磨矿速度的主要原因,微裂纹越多,磨矿速度越快,高压辊磨产品的磨矿速度大于颚式破碎产品的磨矿速度;在粗级别(0.20~3.20 mm)中,高压辊磨产品磨矿速度高于颚式破碎产品的磨矿速度,而且粒度越大,微裂纹数量相差越大,磨矿速度相差越大;随着磨矿时间增加,磨机中粗粒级的质量分数越来越小,微裂纹也越来越少,磨矿概率成为影响磨矿速度的主要原因,高压辊磨产品的磨矿速度等于颚式破碎产品的磨矿速度;高压辊磨碎磨工艺可以使磨矿产品粒度分布更加均匀,优化粒度组成。  相似文献   

7.
对弓长岭磁铁矿石进行高压辊磨和颚式破碎,分析不同粉碎工艺对粉碎产品粒度特性的影响,测定不同粉碎方式在不同目标粒度下的Bond球磨功指数,研究颚式破碎和不同的高压辊磨机辊面压力对Bond球磨功指数的影响。研究结果表明:高压辊磨产品比颚式破碎产品细粒级质量分数高,高压辊磨辊面压力4.5 N/mm~2和5.5N/mm~2产品的粒度分布更加均匀;在磨矿细度小于0.074 mm的质量分数为65%,高压辊磨产品在辊面压力为2.5,3.5,4.5,5.5和6.5 N/mm~2下的Bond球磨功指数比颚式破碎产品分别降低11.36%,21.38%,15.62%,22.59%和27.49%,在磨矿细度小于0.074 mm的质量分数为40%,高压辊磨产品在辊面压力为2.5,3.5,4.5,5.5和6.5 N/mm~2下的Bond球磨功指数比颚式破碎产品分别降低18.49%,27.61%,22.69%,30.37%和35.08%,Bond球磨功指数降低幅度分别降低7.13%,6.23%,7.07%,7.87%和7.59%;辊面压力为5.5和6.5 N/mm~2的Bond球磨功指数降低幅度最大,粗磨节能效果更显著。  相似文献   

8.
为了研究粒度变化对磁铁矿磁性特征及磁团聚的影响,分别在不同磨矿细度条件下进行磁铁矿的"阶段弱磁选"试验,采用单体解离度分析仪(MLA)和振动磁强计(VSM)分别对磁铁矿的单体解离度和磁化曲线进行测定,并对磁铁矿各组分间的磁团聚力进行分析。研究结果表明:磁铁矿经过一段磨矿后,已经存在部分磁铁矿单体和非磁性脉石,可采用弱磁选实现分离。随着磨矿粒度的降低,磁铁矿单体颗粒的比磁化系数逐渐减小,矫顽力逐渐增大。磁铁矿单体与富连生体比磁化系数之间的差异逐渐减小,磁铁矿单体之间与磁铁矿单体和富连生体之间的磁团聚力差异也逐渐减小,导致磁铁矿单体和连生体的分离难度增大。较粗的磨矿粒度对磁铁矿不同组分的弱磁选分离更加有利,预先分离出合格的磁铁矿精矿和尾矿,仅使连生体作为中矿进行选择性分级再磨,能够提高磁铁矿的分选效率。  相似文献   

9.
采用一种新型实验室高压电脉冲矿石预处理技术及“预处理—破碎—磨矿—弱磁选”流程,考察了高压电脉冲预处理技术对大孤山磁铁石英岩的粉碎产品及磁选精矿品位的影响.试验结果表明,在磨矿浓度为70%,磨矿时间为3min,磁场强度为111.4kA/m,磁选时间为3min的条件下,预处理磁选精矿品位提高7.26%.单体解离度分析表明,预处理产品的粒级分布更均匀,有用矿物的单体解离度提高17.78%(-0.50mm粒级).采用SEM观察其微观结构,预处理破碎产品内部的裂纹主要在相邻的不同矿物界面之间产生并发展.高压电脉冲预处理技术通过促进矿石内部不同矿物晶界处微裂纹的产生和发展,减少磨矿时间,从而降低能耗.  相似文献   

10.
针对紫金山铜金矿石,开展了不同破碎方式下产品的粒度特性、裂纹性质、比表面积、孔体积和相对可磨度研究.结果表明,与常规破碎方式相比,经高压辊磨机粉碎后物料的中值直径更小,粒度分布更均匀,细粒级含量多;高压辊磨机在辊面压力为3.5 MPa时粉碎后物料的比表面积和孔体积为2.544 m~2·g~(-1)和11 mm~3·g~(-1),比常规破碎产品分别提高了12.36%和22%;高压辊磨机在辊面压力为5.5 MPa时粉碎后物料的比表面积和孔体积分别为2.568 m~2·g~(-1)和13 mm3·g~(-1),比常规破碎产品分别提高了13.42%和33%,表明高压辊磨机粉碎物料粒度细、颗粒裂纹更多,且高压辊磨机粉碎后物料由于裂纹丰富,故更易磨.  相似文献   

11.
研究了钒钛磁铁矿的固态还原过程及影响因素,讨论了磨矿粒度、还原温度和配碳量对固态还原金属化率及还原后炉料中钛走向的影响.采用煤基直接还原工艺流程,能够将钒钛磁铁矿中铁的氧化物还原为金属铁,然后通过磁选,可实现钛、铁的有效分离.实验结果表明,最佳工艺条件为:还原温度1 100℃,配碳量为1∶1,磨矿粒度控制在75~150μm之间.在此工艺条件下得到铁的金属化率和渣中钛的质量分数分别在80%和36%以上.该工艺为我国大批量钒钛磁铁矿的开发利用提供了新途径.  相似文献   

12.
王磊 《科技资讯》2012,(14):122-122
根据河北邢台某磁铁矿的化学成分、铁物相分析,进行了磁选流程试验。试验采用两段磨矿、三段磁选流程进行处理。第一、二段磨矿细度分别为-0.074mm占60%和99.38%,经过分选后磁选精矿品位可以达到63.29%,回收率为69.42%,选矿比为3.11。  相似文献   

13.
对西藏墨竹工卡邦铺钼铜矿进行高压辊磨和传统碎磨,分析不同粉碎工艺对粉碎产品微裂纹的影响,测定不同粉碎方式在不同目标粒度的情况下矿石的Bond球磨功指数,研究不同粉碎方式对粉碎产品Bond球磨功指数的影响。研究结果表明:高压辊磨产品较传统破碎产品微裂纹更多,在0.9~3.2 mm粒级时,高压辊磨产品表面的微裂纹十分明显;高压辊磨产品较传统破碎产品的Bond球磨功指数低,随着目标粒度的减小,高压辊磨产品较传统破碎产品的Bond球磨功指数降低的幅度在逐渐减小;与传统碎磨产品相比,高压辊磨产品在磨矿细度(小于0.074 mm含量)小于60%时的节能效果更明显。  相似文献   

14.
针对我国复杂难处理钒钛磁铁矿资源特点,研究了微波加热对钒钛磁铁矿磨矿性能的影响,揭示了钒钛磁铁矿在微波作用下选择性破碎与界面破碎特性.结果表明:微波场中,矿石的温度随着矿石粒度的增大而增加,且微波功率对矿石升温性能的影响最显著;X射线衍射分析与SEM分析表明,微波预处理后矿石内部会产生大量的晶界裂纹,使更多的单体矿物解离出来;在微波功率为4 k W、加热时间100 s后的磨矿产物中,小于0.074 mm粒级的质量分数由原矿的72%提高到95%.  相似文献   

15.
高压辊磨机粉碎贫赤铁矿产品粒度特性   总被引:2,自引:0,他引:2  
研究了贫赤铁矿经高压辊磨机开路、边料循环闭路和筛分全闭路粉碎后产品的粒度特性.试验结果表明:随着辊面压力的增加,粉碎产品粒度降低,分布更加均匀,破碎比F50/P50的增长速率高于破碎比F80/P80和F20/P20的增长速率;随着边料循环量的增加,粉碎产品的粒度降低,分布更不均匀,破碎比F80/P80的增长速率高于破碎...  相似文献   

16.
应用化学分析、扫描电镜观察和X射线衍射分析方法研究海砂矿的基础物性. 采用煤基深度还原-磁选工艺,系统考察矿粉中Fe和Ti的还原分离行为,并明确还原温度、还原时间、碳氧比、磁感应强度和磨矿粒度对还原磁选效果的影响规律. 结果表明:海砂矿主要由钛磁铁矿和钛赤铁矿组成;较优的还原分离工艺参数为还原温度1300℃、还原时间30 min、碳氧摩尔比1. 1、磁感应强度50 mT和磨矿细度-0. 074 mm质量分数86. 34%. 在此工艺条件下,可以获得金属化率94. 23%的还原产物,磁选指标分别达到精矿铁品位97. 19%和尾矿钛品位57. 94%,对应的铁、钛回收率为90. 28%和87. 22%,有效地实现海砂矿中铁钛元素的分离富集.  相似文献   

17.
朝阳钒钛磁铁矿工艺矿物学研究   总被引:1,自引:0,他引:1  
采用传统工艺矿物学研究方法,结合光学显微镜、X射线衍射、化学分析等分析手段,对朝阳地区钒钛磁铁矿石的化学组成、元素赋存状态、矿物组成、矿物间的嵌布关系及粒度分布进行了详细研究.结果显示:该铁矿石中铁矿物主要为磁铁矿、钛磁铁矿和钒磁铁矿,长石是最主要的脉石矿物.矿石中主要矿物嵌布关系复杂,磁铁矿与钛磁铁矿颗粒结合紧密,大多结合成连生体,不利于铁矿物与钛矿物之间单体解离;主要矿物嵌布粒度粗细不均,磁铁矿嵌布粒度相对较粗,钛磁铁矿和钒磁铁矿嵌布粒度相对较细.该研究为该地区钒钛磁铁矿资源的合理开发利用提供了依据.  相似文献   

18.
高压辊磨机粉碎铁矿石工艺节能性试验分析   总被引:4,自引:0,他引:4  
GM1000×200新型铁矿石高压辊磨机在孤山铁矿选矿厂进行了工业化连续粉碎铁矿石的试验。通过对粉碎前后物料的筛分统计,以邦德(Bond)破碎理论对高压辊磨机粉碎铁矿石的节能效果进行分析,进一步证实了高压辊磨机在铁矿石粉碎中不仅粉碎效果非常理想,而且大大提高了生产率、节约了生产能耗,有效地解决金属矿山选矿行业 “多碎少磨”技术难题。  相似文献   

19.
利用磨矿动力学研究了微波处理前后不同粒级钒钛磁铁矿的破碎速率(S1)及初始破碎分布函数(Bi,j),并分析了磨矿产品的表面形貌及物相组成的变化.结果表明:微波处理前后钒钛磁铁矿均遵循一级磨矿动力学,微波处理后矿石的S1值均高于未处理矿石,且增加的幅度随着矿石粒度的增加而增大.微波处理前后钒钛磁铁矿的Bi,j取决于入料粒度,微波处理后矿石的粒度分布函数γ值均小于未处理矿石;SEM分析表明:微波处理后磨矿产品有着更小的粒度尺寸和更粗糙的表面;XRD分析表明:球磨后,微波处理后的矿石有着更强的衍射峰和更多的脉石相,说明矿石的解离程度得到提高.  相似文献   

20.
用凝胶渗透色谱法(GPC)研究了人工合成高聚物磺化聚丙烯酰胺(PAMS)在微细粒钛铁矿和长石上的吸附特性及它们的絮凝行为;用光电子能谱(ESCA)和分子轨道(MO)理论研究了絮凝剂PAMS与钛铁矿和长石的作用机理;并根据絮凝剂与矿物作用的差别进行了微细粒钛铁矿、钒钛磁铁矿、长石矿料的絮凝分离试验。PAMS在矿物表面上的吸附量与其平衡浓度有线性关系。吸附量随平衡浓度增加而增加。在钛铁矿上的吸附量及吸附强度均比长石大。分子轨道理论分析和光电子能谱证实PAMS的磺酸基在钛铁矿表面与过渡金属离子形成络合物;而在长石上是弱氢键作用。采用一种新的工艺流程:选择性混合絮凝-磁选-超声波解絮凝-磁选可从含20.35%TiO_2及29.7%Fe的物料中选出钛铁矿精矿和钒钛磁铁矿精矿,品位分别为42.12%TiO_2,58.10%Fe;回收率相应为83%及90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号