首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
假定地震波为垂直入射的弹性平面波,探讨隧洞洞口段平面波输入方法;基于拉、压条件下混凝土不同的损伤演化过程,建立适于编程的混凝土衬砌弹性动力损伤本构模型;针对地震作用下衬砌与围岩相互作用特点,建立衬砌与围岩联合承载分析模型;以处于强震区的滇中引水隧洞某出口段为实例,分析平面P波和SH波同时作用下洞口段的地震响应特性。研究结果表明:衬砌各部位位移与地震波的振动方向有关,峰值位移随着与洞口距离增大而减小,并在48 m处趋于稳定;在地震作用下,衬砌的损伤破坏以拉损为主,损伤系数随时间逐渐增大;衬砌中脱开区、滑移区的分布与其震损较严重区域的分布基本一致,主要分布于距洞口21 m之内的拱肩、拱腰和拱脚部位。  相似文献   

2.
基于混凝土材料的动力损伤特性,建立了其弹塑性损伤本构模型,将该模型应用于强震区某大断面隧道工程,分析了不同地震波入射方向、地震波强度和围岩条件下隧道结构的地震响应与动力损伤规律,探讨了大断面隧道结构的地震损伤特性和破坏机理。研究结果表明:地震波垂直、水平两种入射条件下两者衬砌的压主应力、加速度响应形态相似,但水平入射条件下衬砌结构的应力、加速度响应相较于垂直入射条件更加剧烈;水平入射时衬砌的动力损伤远大于垂直入射时的动力损伤,且动力损伤主要集中于拱腰与墙脚处;围岩条件对隧道衬砌结构的拉主应力响应以及动力损伤有显著影响,V级围岩条件下衬砌结构的最大拉应力是IV级围岩下的5.7倍;隧道结构的地震响应与动力损伤特性也受地震波强度的影响,随着地震波强度增大,应力、加速度响应峰值以及最大动力损伤量均呈现非线性增大趋势,动力损伤随之加剧且由拱腰和墙脚处逐渐向外扩展;在强震区软岩隧道抗震设计以及运营期间震后加固修复应着重注意动力损伤集中的部位。  相似文献   

3.
选取不同近接距离基坑开挖来研究隧道的沉降变化规律,利用激振荷载经验公式来模拟高速列车的轮-轨激振力,并运用有限差分动力分析方法分析不同距离基坑开挖作用下隧道衬砌结构的车振动力响应.结果表明:近接基坑开挖会造成隧道掌子面的非对称变形,离开挖中心越近非对称变形越明显;随着近接开挖距离的增加,这种非对称变形逐渐趋于缓和,其中隧道靠近开挖侧的隧道拱脚、拱腰和拱顶区域可作为施工期间既有隧道的重点监测部位;隧道左右两侧帮底部区域相对拱顶区域而言受到列车振动影响较大,列车靠近开挖侧行驶时隧道衬砌结构动力响应比远离开挖侧行驶时大.  相似文献   

4.
以乌鲁木齐地铁隧道穿越西山活动逆断层工程为例,建立三维弹塑性有限元模型.首先模拟分析了逆断层错动作用下隧道二次衬砌塑性应变发展过程,拉压损伤因子、剪切应变的横向及纵向分布规律,计算了混凝土的裂缝宽度;其次研究了不同错动位移、隧道底部距围岩交界面不同垂直距离及不同破碎带宽度的结构损伤规律,最后进行了设置柔性接头的减灾效果研究.结果表明:二次衬砌结构破坏首先出现在拱顶;然后是拱底,最后在拱腰处累积.破裂面附近拱腰处发生拉压剪的共同破坏;远离破裂面上盘拱顶,破碎带拱底处发生受拉破坏;远离破裂面上盘拱底,破碎带拱顶处发生受压破坏.基于混凝土裂缝得到隧道拉裂破坏的严重与轻微受损区分别为10 m和30 m.错动位移越大,结构受损越严重;隧道底部距围岩交界面垂直距离越大,土层越厚,耗散能量越多,结构受损越轻;破碎带宽度越大,隧道破坏越严重,当破碎带宽度达到26 m时,破碎带宽度对隧道的影响基本保持稳定.设置柔性接头可以显著降低结构的损伤,基本满足在设防错动位移下的设计要求.  相似文献   

5.
为防范桩基施工过程产生的冲击载荷对邻近隧道衬砌结构产生振动变形、应力破坏等不利影响,首先,针对某码头工程在施工载荷作用下动力响应,结合实际工程地质条件构建"桩基-土层-隧道"三维动力有限元模型;然后,为验证模型的可靠性,模拟打桩对隧道衬砌结构的影响,并与实测数据对比分析验证地表速度振动峰值;最后,结合实际工程,基于验证后的模型,研究不同土层、土层与衬砌交界面处应力波的反射与散射作用,分析不同深度和不同距离工况条件下,桩基施工对隧道衬砌结构的动力响应.研究结果表明:隧道截面最不利的振动部位位于衬砌结构靠近桩位一侧的上1/4弧段,该区域所受冲击作用最明显;当桩底与隧道中心相对距离比较近时,衬砌结构所受到的冲击影响最大,而当桩底已超过隧道埋深,打桩产生的冲击对隧道衬砌作用影响逐渐减弱;打桩与隧道间隔距离越远,随着冲击载荷传播距离增大,其能量衰减越大,对隧道衬砌造成的影响越小.  相似文献   

6.
采用Hilbert-Huang变换的波谱分析技术,对输入地震波进行波谱分析;并根据能量原理,推导损伤状态下的能量反应方程.基于损伤能量方程对隧道结构进行非线性地震反应分析,讨论了隧道结构的抗震薄弱部位及其渐近破坏过程.研究结果表明:隧道衬砌拱肩和墙脚是隧道抗震的薄弱部位,在一些强震作用下,仰拱也会出现破坏,隧道抗震设计应加强这些部位的抗震措施.研究结果可为隧道结构抗震设计提供依据和指导.  相似文献   

7.
基于工程波动理论,应用ABAQUS数值模拟和理论解析方法,研究了溶洞中心与隧道中心处于同一水平时,埋深对岩溶隧道地震动力响应影响规律,并对比分析地震作用下有无溶洞时隧道的反应差异性.分析结果表明:岩溶隧道和非岩溶隧道发生较大位移的部位均为拱肩和拱脚;溶洞对隧道地震动有缓冲作用;岩溶隧道埋深越浅,地震动力响应位移越大;在地震作用下,隧道二次衬砌第一主应力较集中的部位是拱脚.埋深15 m时第一主应力最大,埋深100 m时第一主应力最小;埋深100 m时,岩溶隧道比非岩溶隧道的第一主应力小,说明溶洞对隧道岩体有一定的应力释放作用.  相似文献   

8.
隧道空洞是影响隧道稳定性的重要原因之一,因此开展了空洞在拱肩、边墙、拱脚及拱底等位置的模型试验,总结出存在不同位置的空洞隧道的破坏形式和破坏顺序.试验结果表明:拱肩空洞模型在空洞的边界位置和拱脚处现受压破坏,底板出现开裂;边墙空洞模型在空洞位置相应的衬砌出现压溃及拱顶产生开裂;拱脚空洞模型是拱脚位置衬砌受压破坏以及拱顶产生开裂;底部空洞模型是在底板衬砌位置及相应拱肩衬砌受压破坏以及拱顶出现开裂,研究结果为隧道的顺利施工和后期维护提供参考依据.  相似文献   

9.
采用振动台试验研究了桥隧搭接结构模型在不同加载方向的汶川波和不同加速度峰值的El-Centro波条件下,围岩动土压力的动力响应规律。结果表明:围岩动压力主要由水平向地震波产生;扩大段在低地震强度时拱腰处围岩动压力最大,在高地震强度时仰拱处围岩动压力最大;由于扩大段靠近隧道洞口的仰坡临空面,扩大段围岩的动压力峰值显著大于标准段。  相似文献   

10.
采用1∶10破坏性模型试验,研究隧道不同损伤状态衬砌预养护构件变形特性、破坏模式与承载力.研究表明:预养护试件整体破坏由原衬砌拱腰极限承载力控制;预养护损伤衬砌受力过程为"加载—原裂缝贯通—套拱拱顶裂缝贯通—试件破坏",整体结构刚度逐渐退化.关键部位破坏顺序为"拱顶开裂—拱腰脆性断裂—拱顶延性破坏".裂缝深度为1/3衬砌厚度损伤状态可作为合理预养护时机;不同损伤状态衬砌预养护曲率突变点一致,可作为加固构件养护控制基准;提出衬砌预养护构件破坏荷载与损伤状态关系简易计算公式,计算结果与试验误差约5%.  相似文献   

11.
山区地质构造复杂,难免穿越复杂地层,此类地层强度和稳定性较低,往往对隧道围岩变形起着决定作用。本文以宝鼎2号特长公路隧道为依托,基于数值模拟和现场监测数据,分析隧道穿越断层及煤层时围岩的变形规律。研究结果表明:隧道穿越断层及煤层时,拱顶、拱腰、仰拱处的位移都发生突变,最终位移值皆远大于不含断层及煤层处的围岩,且不同空间位置的煤层对围岩变形的影响不同,与隧道轴线相交的煤层对隧道拱顶、拱腰、仰拱位移都有明显影响,而只处在隧道上方的煤层,仅对隧道拱顶的位移有影响,对拱腰和仰拱位移影响很小。  相似文献   

12.
为揭示不同曲率半径对小净距超大断面隧道地震响应特征的影响,以长乐龙门隧道为研究对象,分别建立曲率半径为400、 600、 800、 1 000和∞m的模型.结果表明,在横向和纵向地震的作用下,曲率对小净距超大断面隧道地震响应有较大影响.受曲率半径的影响,隧道左右洞凸侧(右侧)的内力均大于凹侧(左侧),且随着曲率半径的减小,右侧内力与左侧内力的差距增大.此外,曲线隧道拱顶和仰拱处的弯矩、剪力均随着曲率半径的减小而增大,而拱脚处的弯矩、剪力、轴力则均随着曲率半径的减小而减小.位移受曲率半径影响较小,变化幅度不超过1%.因此,隧道抗震设计时应考虑隧道曲率半径的影响.  相似文献   

13.
运营隧道由于地质因素、施工因素与地下水因素造成衬砌结构带裂缝工作。在地震力作用下,带裂缝的衬砌的安全性难以保证。基于隧道衬砌结构裂损的不同位置和裂缝不同深度的考虑,建立了三维数值有限元模型,采用时程分析的方法研究了衬砌的动力响应。研究表明:①在地震力作用下,隧道衬砌受往复拉压作用;在剪切波作用下,最大弯矩、轴力发生在隧道横截面"X"位置;②带裂缝衬砌在地震力作用下,纵向裂缝处混凝土应力集中,主筋拉应力增大,其他位置内力与完好衬砌响应相同;③随着裂缝的位置不同,对隧道安全性的影响不同,影响顺序由大到小依次为225°、315°、270°;④衬砌初始裂缝深度越深,在地震作用下应力集中情况越严重。  相似文献   

14.
依据在建的延崇高速杏林堡隧道工程地质条件,借助FLAC3D有限差分软件,采用Hoek-Brown屈服准则,对五种埋深条件下Ⅳ级围岩不同应力释放率下施作二衬进行了数值模拟。通过分析围岩特征点位移、二衬应力和围岩应力后得出结论:同一埋深条件下,围岩应力释放率对围岩位移影响不大,随着埋深加大,围岩位移和二衬应力呈倍数增长趋势;围岩释放率为70%~90%时为最佳支护二衬时机,此时初支承受荷载比二衬大,能充分发挥围岩自承能力;拱脚部位岩体存在应力集中,拱腰受水平应力影响较大,并随埋深的加大二者现象越明显,需对它们加强支护。  相似文献   

15.
为了探寻爆源逐步接近既有隧道情况下衬砌受爆破振动的响应规律、爆破荷载作用下的应力分布状态,结合温州市瓯海区西山隧洞工程,根据施工现场爆破监测数据和数值模拟结果对新建隧道爆破施工时相交隧道的安全性进行研究,研究结果表明振速主要受到爆心距和装药量的影响:爆心距越小装药量越大,振速峰值越高;爆心距决定隧道衬砌合速度峰值发生位置;衬砌合速度峰值位置同时是最大拉应力点;随爆心距的缩进,危险点从拱腰位置移动到拱脚。  相似文献   

16.
针对特大断面隧道断层破碎带地震响应强烈而导致衬砌结构更易遭受破坏的问题,本文采用FLAC 3D仿真计算软件,通过数值模拟,研究特大断面隧道地震与断层宽度、断层倾角的关系,分析衬砌地震响应规律,确定抗震薄弱位置及抗震设防范围。分析结果表明:断层处的衬砌横断面上的拱腰和拱脚处属于抗震薄弱位置,需要在这些位置处重点进行设防;断层上盘位置对地震响应更明显,应加强这些位置上隧道衬砌的抗减震措施;地震时,小倾角,大宽度的断层构造对特大断面隧道的影响大。在本文研究的断层构造范围内,特大断面隧道的抗震设防区域选取应为:断层及断层交界面前后各取25~30m的区域。这些结果可为地震区的特大断面隧道设计建设提供参考。  相似文献   

17.
 基于有效应力分析法,运用有限差分程序FLAC3D建立了盾构隧道主隧道、联络通道、地层相互作用三维计算模型。分析了两辆列车单次交汇运营条件下,联络通道与隧道结构连接处典型断面特征点处土层孔隙水压力、盾构隧道衬砌结构变形及主应力变化。计算结果表明:在列车振动荷载作用下离隧道拱底越近的土层,孔隙水压力与初始有效应力的比值越大,但均小于1,土体尚未达到发生液化的条件;衬砌结构位移最大值出现在盾构隧道拱底,为0.16mm;衬砌结构拉、压应力最大值均未超过结构抗拉、抗压强度设计值,表明衬砌结构在列车振动荷载作用下是安全的。  相似文献   

18.
以云南玉溪至磨憨铁路曼勒一号隧道为依托,对西南地区岩溶富水隧道坍塌进行处治并预防,建立基于隧道坍塌机理的隧道坍塌力学计算模型,采用理论分析结合有限元计算软件MIDAS GTS NX模拟的方法分析了隧道坍塌段围岩及初支稳定性,并提出有效的处治措施。结果表明:坍塌段隧道模型拱顶沉降量为48.5 mm,拱腰水平收敛量为111.53 mm,围岩变形量较大,发生坍塌事故的风险较大;围岩塑性区出现在上中台阶掌子面,应变最大值为7.85×10-2,发生塑性破坏可能性较大;隧道坍塌段初支所受拉应力和压应力分别达到了19.68 MPa和17.89 MPa,根据铁路隧道设计规范抗拉极限强度为2.0 MPa,抗压设计强度为12.5 MPa,支护结构承受荷载过大易发生破坏。隧道施工现场地下水渗漏对砂泥岩地层围岩稳定性有重大影响,小范围溜塌最终导致大范围围岩失稳坍塌、初支破坏。根据现场实际工况,采用双层超前小导管补强支护对坍塌段进行加固,隧道坍塌段处治效果良好,为后续类似工程提供指导借鉴。  相似文献   

19.
本文以兰州市伏龙坪双层黄土公路隧道为研究对象,研究其在8度地震荷载作用下的动力时程反应。计算结果表明:在地震荷载作用下衬砌上应力值较大的部位主要集中在拱腰、拱脚和行车道板等部位,塑性区主要分布在拱顶、拱腰二侧,以及边墙与仰拱相接的拱脚等靠近衬砌的小范围土体上,塑性区开展最大深度接近2.0m,说明在此地震动作用下,塑性区范围内的部分土体会产生松动、变形,在一定程度上影响隧道的整体稳定性。上述结果可作为双层黄土公路隧道抗震设计的参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号