首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究方钢管竖向插板加强T型节点(IPT)轴向滞回性能,对2组竖向插板加强T型节点进行轴向往复加载试验,并与未加强(URT)和覆板加强节点(DPT)进行对比,最后对插板尺寸和构造进行有限元参数分析,提出插板构造的优化建议.研究结果表明:竖向插板加强节点的轴向滞回性能较优,IPT试件的承载力和耗能能力比URT试件的承载力...  相似文献   

2.
为研究覆板及环口板加强方钢管T型节点的受压性能,建立并验证了加强节点的有限元分析模型,考察了支管宽度和加强板尺寸等参数的影响规律,分析了加强节点的破坏形态及承载力设计方法.参数分析结果表明:支管宽度与加强板厚度是影响覆板和环口板加强节点受压性能的关键参数,并决定了加强节点的破坏模式;当支管-主管宽度比超过0. 8或加强板与主管厚度比大于2. 2时,节点发生主管侧壁屈曲控制的破坏形态,没必要继续增加加强板厚度;文中提出的新型环口板加强方法可以较好地增强主管翼缘和侧壁,阻止或延迟主管侧壁屈曲的发生.文中还采用现有规范和文献的设计公式,计算了覆板及环口板加强节点的受压承载力,验证了各公式的适用范围,从而为该类加强节点的设计提供参考.  相似文献   

3.
通过足尺试验对X型钢管-插板斜材的承载力进行研究,并在此基础上对试验节点进行了数值模拟,分析X型十字插板钢管节点及钢管混凝土节点的破坏机理,以及不同受力方式对节点承载力的影响。试验结果及有限元分析结果一致,对于X型插板节点,通长斜材和断开斜材一拉一压的受力状况下,断开斜材受压较通长斜材受压节点极限承载力提高10%~20%。钢管节点的受压管端部、钢管混凝土节点的环形加强板及十字插板是较为薄弱的部位。  相似文献   

4.
为探讨方钢管覆板加强节点的轴向受压承载机理,对表面覆板加强节点进行静力加载试验,分析了节点的破坏形态和荷载-变形曲线;建立了覆板加强节点的有限元模型并进行有限元参数分析,揭示了覆板对节点的加强机理;文中还采用塑性铰线法建立了覆板加强节点的承载力设计公式,并提出了覆板加强的设计建议.结果表明:增加覆板厚度能显著提高节点的抗压承载力,覆板宽度和长度对节点承载力的影响不明显;覆板尺寸相同时,支管-主管宽度比(β)越小,则覆板的加强比越高;覆板对节点的加强机理为覆板与主管表面共同屈服,但当β≥0.8或覆板厚度较大时,加强节点容易发生主管侧壁屈曲,造成覆板屈服不能完全发展;文中公式计算结果与试验及参数分析结果吻合较好.  相似文献   

5.
对方钢管混凝土柱-钢梁竖向加劲肋式节点建立了同时考虑几何非线性和材料非线性的有限元分析模型,模拟分析了单调加载下节点的受力性能,较为精确地分析了节点区应力分布.结果表明:由有限元模型所得的位移曲线与试验所得的低周反复荷载作用下的骨架曲线相符,由有限元模型所得的应变分布和发展规律与试验结果一致;竖向加劲肋式节点的梁端弯矩一部分通过竖向加劲肋传递给柱钢管腹板和核心混凝土,另一部分梁端弯矩由梁端翼缘直接传递给柱钢管翼缘和核心混凝土;节点的破坏模式为梁翼缘变截面最窄处形成塑性铰,最终梁受压翼缘出现严重的局部屈曲,而柱钢管和竖向加劲肋均在弹性范围内工作,很好地实现了强柱弱粱、强节点弱构件的抗震原则;节点核心区混凝土性能符合斜压杆受力机制.  相似文献   

6.
承受轴力的T型方钢管节点,当节点失效形式为主管表面屈服时,可用塑性铰线模型计算管节点的极限承载力。对于火灾升温环境下的T型方钢管节点,当其承受支管和主管轴力作用时,通过对高温下钢材屈服强度的折减,可以估算T节点失效时的临界温度。利用该理论和方法,对5个不同几何参数的T节点模型在标准升温过程中的临界温度进行了估算,并和有限元模拟的结果进行对比。研究结果表明:利用塑性铰线理论和屈服强度折减方法可以较为精确地估算火灾环境下T型方钢管节点失效临界温度。  相似文献   

7.
为研究主方支圆高强钢管轻骨料混凝土有间隙K型节点的承载力,对支管间设置加劲板的节点和基本型节点进行了主管轴压静力加载试验,考察了加劲板和支主管偏心距对节点破坏模式和承载力等受力性能的影响.试验结果表明:与受拉支管相连的主管鼓起、支主管焊缝开裂、支管根部屈曲、加劲板焊缝开裂和加劲板屈曲是该类节点的典型破坏模式;受压支管和主管受压区内轻骨料混凝土未发生明显破坏,受拉支管和主管受拉区内轻骨料混凝土发生轻微破碎;加劲节点的屈服承载力和极限承载力较基本型节点分别提高43.4%~69.6%和25.9%~43.1%.基于有间隙K型节点试验破坏模式,推导了考虑加劲板应力传递效应和轻骨料混凝土约束效应的与受拉支管相连的主管凸曲承载力计算式和支主管焊缝开裂承载力计算式.  相似文献   

8.
为研究N形方圆钢管搭接节点中被搭接管内隐藏部分和主管间焊接与否对节点受力性能的影响,设计制作了4个N形方主管圆支管搭接节点足尺试件进行极限承载力试验.试验结果表明:被搭接管受拉时,其内隐藏部分和主管间不焊将降低节点承载力,且搭接率越大,降低幅度越大.此外,内隐藏部分未焊接的节点均发生了焊缝断裂破坏.以试验为基础,建立了非线性有限元分析模型,对324个不同几何参数、支管不同轴力性质下内隐藏部分焊接与不焊接的N形方圆钢管搭接节点进行了有限元分析,研究表明:内隐藏部分未焊接对被搭接管受压的节点承载力影响较小,但对被搭接管受拉的节点极限承载力影响较大.针对实际工程中钢管桁架均为先组装再焊接导致内隐藏部分难以施焊的情况,给出了设计建议.  相似文献   

9.
对方钢管轻骨料混凝土加劲T型节点和基本型节点进行了支管轴压试验,考察了加劲板和支主管截面宽度比对节点破坏模式、承载力等受力性能的影响.试验结果显示:节点的典型破坏模式有主管弯曲、主管上翼缘凹陷、主管腹板凸曲、支主管焊缝开裂、支管侧倾、加劲板屈曲和加劲板焊缝开裂等;加劲节点的承载力取决于包含加劲板应力扩散效应和轻骨料混凝土约束效应的方主管抗压弯强度和支主管焊缝承载强度,加劲节点的极限承载力较基本型节点提高15.0%~48.3%.建立了TY型节点方主管抗压弯计算模型和支主管焊缝开裂计算模型,推导了考虑加劲板应力扩散效应和轻骨料混凝土约束效应的加劲TY型节点方主管压弯承载力计算式和支主管焊缝开裂承载力计算式,验证了加劲TY型节点承载力计算式的精度.  相似文献   

10.
为了解主管内填混凝土对矩形钢管桁架受力性能的影响,在试验研究的基础上,进行了主管内填混凝土对矩形钢管桁架结构节点、杆件承载力和刚度的影响分析,并探讨了其失效机理。结果显示:主管内填混凝土改变了节点的失效模式,但节点仍然是桁架结构的薄弱部位;主管内填混凝土能够明显提高受压节点的承载力和刚度,但受拉节点的承载力和刚度提高程度不明显;主管内填混凝土能够很好地协助受压主管受力,并提高受压主管刚度,而受拉主管的承载力和刚度提高程度不明显;对受压支管承载力有一定影响,而对受拉支管影响很小。探讨了目前规程关于受压节点的破坏模式和承载力计算,以及主管内填混凝土后的矩形钢管桁架结构变形的计算,提出了考虑节点变形影响的实用计算方法,为主管内填混凝土矩形钢管桁架结构的应用提供参考。  相似文献   

11.
为研究新型复式钢管混凝土柱-钢梁连接节点的力学性能,采用模型试验与有限元分析相结合的方法得到了钢梁翼缘受拉模型,通过分析竖向肋板和锚固腹板的传力机理,得到了竖向肋板与锚固腹板连接构造参数对节点受力性能的影响,提出了该新型节点设计改进建议,根据钢梁翼缘受拉模型推导出梁端极限承载力计算公式,并将计算结果与反复荷载试验得到的承载力进行了比较。研究结果表明:翼缘传来的拉力主要依靠竖向肋板和锚固腹板进行传递,可忽略钢管和核心混凝土的贡献;该新型节点能可靠地传递梁端弯矩、轴力和剪力,符合节点更强、整体性好的设计原则;理论计算与模型试验所得结构承载力的误差在2.16%~4.14%的范围内,证明了该模型适用性,但计算值偏保守;研究成果可为该新型节点今后的工程应用提供依据。  相似文献   

12.
目的研究带屈曲约束支撑的方钢管高强混凝土柱-H型钢梁削弱节点的受力性能,找出翼缘削弱方式和削弱程度等因素对其受力性能的影响.方法通过ABAQUS有限元分析软件,对18个传统型节点和削弱型节点模型进行单调荷载作用下的拟静力分析,对比分析在不同轴压比、混凝土强度、梁柱线刚度比和BRB屈服承载力的影响下,传统型节点和削弱型节点的破坏机理.结果梁端翼缘的削弱不会降低屈曲约束支撑的屈服承载力和极限承载力,不会降低节点的承载能力.建议节点的削弱参数按照a=(0.3~0.7)×b_f,b=(0.75~0.85)×h_b,c=(0.2~0.25)×b_f进行取值.结论削弱型节点的梁端塑性铰出现在削弱部位,梁端翼缘的削弱起到塑性铰外移的作用,减小了节点区域应力集中,有利于实现"强柱弱梁、强节点"的抗震设计目标.  相似文献   

13.
采用有限元软件Abaqus建立冲击荷载下一端固支另一端可轴向平动K形管节点的有限元分析模型.基于该模型研究了主管受轴压力等4种工况的K形管节点受横向冲击荷载下的破坏模态.基于对冲击力时程曲线、位移时程曲线、能量耗散等抗冲击性能指标分析,研究了K形管节点的抗冲击性能.研究结果表明:主管轴压力的存在显著增大了节点的局部塑性变形、降低了节点稳定承载力,支管受力状态对节点的局部变形和稳定承载力有显著影响.本文的研究成果为进一步深入研究主管受压状态下K形管节点承受横向冲击荷载的破坏机理创造了条件.  相似文献   

14.
矩形钢管混凝土T、Y型节点受压性能试验   总被引:9,自引:0,他引:9  
为研究矩形钢管混凝土T、Y型节点受力性能,进行了7个矩形钢管混凝土T、Y型节点和1个矩形钢管Y型节点的受压试验,对节点的破坏模式及支主管宽度比β、内填混凝土对节点受压性能的影响进行了分析.试验结果表明:主管内填混凝土对矩形钢管混凝土T、Y型节点受压性能的影响明显,主管内填混凝土后,主管侧壁局部鼓曲这一破坏模式得到了避免,随支主管宽度比的减小,节点区域局部变形越明显,节点刚度越小;矩形钢管混凝土T、Y型受压节点承载力根据相应的破坏模式进行计算,当弦杆长度很短、支主管宽度比很小时,采用局部承压破坏模式进行计算;当弦杆长度较长时,往往发生弦杆弯曲破坏.  相似文献   

15.
文章研究了支管受拉或受压的圆钢管混凝土Y形节点在各种失效模式下的受力性能和破坏机理,基于不同失效模式下的破坏机理和受力状态,建立了合理的力学计算模型,提出了支管截面形式为圆形或矩(方)形的圆钢管混凝土Y形节点极限承载力计算方法,并通过试验验证了所提计算方法的合理性。研究结果表明,文中所提出的圆钢管混凝土Y形节点极限承载力计算方法可以用于圆钢管混凝土桁架结构设计和实际工程。  相似文献   

16.
为了解方钢管混凝土柱-工字钢梁竖向加劲肋式节点的抗震性能,对两个方钢管混凝土柱-工字钢梁竖向加劲肋式节点试件进行了拟静力加载试验,研究了节点在反复循环荷载作用下的滞回性能、耗能能力、延性、应力分布和传力机制.试验结果表明,节点具有足够的承载力以及较好的延性和耗能能力,竖向加劲肋式节点的梁端弯矩大部分通过竖向加劲肋传递给柱钢管腹板和核心混凝土,另一部分梁端弯矩由梁端翼缘直接传递给柱钢管翼缘和核心混凝土.节点破坏模式为靠近竖向加劲肋端部的梁翼缘出现严重的局部屈曲,梁翼缘变截面最窄处形成塑性铰,而柱钢管、竖向加劲肋、梁端部均在弹性范围内工作,很好地实现了强柱弱梁、强节点弱构件的抗震原则.  相似文献   

17.
空间焊接相贯节点受力复杂,对大尺寸、多平面支管及空间多向加载作用下相贯节点的承载力设计方法,目前相关的设计规范并未给出详细规定。因此,有必要针对焊接钢管相贯节点在空间多向加载作用下的性能进行分析。以山西省太原南站为工程背景,选取其屋盖结构——伞形空间钢桁架下弦节点为研究对象,采用ABAQUS对其进行有限元分析,计算了节点在空间多向加载作用下的应力、变形分布,并重点探讨节点相贯区域内不同加劲构造措施对节点强度和刚度的影响。分析结果表明:支管与主管相贯区域为节点受力最不利位置,尤以受拉支管与主管汇交处最为明显;圆形截面支管屈服先于矩形截面支管;相对于"井字形加劲肋"构造,"横隔板+纵向加劲肋"构造有效提高节点承载能力,但在纵向加劲肋与横隔板相交处,存在局部塑性变形。  相似文献   

18.
研究了支管受压的Q460、Q690、Q960高强钢圆管X形节点的静力性能。采用经试验数据验证的有限元模型进行节点有限元参数分析,研究高强钢牌号、支管与主管外径之比(β)、主管外径与其管壁厚度之比(2γ)、主管轴向应力比(n)对节点性能的影响;与有限元参数分析和文献中试验结果对比,评价我国钢结构设计标准计算公式的适用性。结果表明,节点发生主管塑性破坏,节点承载力多由主管局部变形限值(3%主管外径)确定;多数情况下钢结构设计标准计算公式高估了高强钢圆管X形节点的承载力;主管受到压力或较大拉力时均会降低节点承载力。最后,针对不同钢材牌号的圆管X形节点给出了建议的2γ范围。基于主管塑性破坏,提出了考虑高强钢屈服强度、主管拉压效应的圆管X形节点承载力计算公式。  相似文献   

19.
圆管相贯加强环节点承载力与变形性能分析   总被引:2,自引:0,他引:2  
根据薄壁钢管的相贯节点的特性,提出了在钢管内部设置加强环节点构造形式,建立了有限元模型;运用ANSYS非线性有限元分析法,分别计算了在主支管相交区内不同方式设置不同数量和大小的加强环节点的各项指标,分析了加强环节点的受力特征与破坏模式,探讨了不同类型的加强环节点的承载力和变形性能,计算结果表明,在不同荷载组合下对节点进行局部加强环的构造型式对于提高节点承载力和减小局部变形是非常有效的措施.最后提出了相关的设计建议取值,避免了部分单纯由构造确定加强环节点的盲目性.  相似文献   

20.
为研究主管轴力、内填混凝土对方钢管节点受拉力学性能的影响,文章进行了X型节点受拉的非线性有限元分析。以方钢管混凝土X型节点受拉试验为研究原型,改变主管的轴力比、宽厚比、支主管宽度比等参数,设计了12个方钢管混凝土和12个方钢管X型受拉节点试件,分别从节点承载力、抗拉刚度、支主管应力分布等方面进行了对比分析。结果表明:改变主管轴拉比、支主管宽度比及主管宽厚比,方钢管混凝土相对于方钢管的节点承载力提高均不显著;主管受轴压力作用时,方钢管混凝土节点承载力高于方钢管节点;方钢管混凝土节点的抗拉刚度、抗疲劳性能显著高于方钢管节点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号