首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
研究铜和锌离子质量浓度变化对Fe~(2+)氧化,Fe~(3+)与As~(5+)共沉淀形成臭葱石过程的作用机理以及对As和Fe沉淀率、沉砷渣化学组分和物相组成的影响规律。研究结果表明:由于Cu~(2+)/Cu~+离子对的催化作用,亚铁离子氧化速率加快,促进亚稳态碱式硫酸铁水热沉淀反应的发生,当初始Cu~(2+)质量浓度为20 g/L时,As和Fe沉淀率分别为96.9%和74.9%;沉砷渣中Cu主要以类质同象形式取代砷酸铁晶格中的铁形成砷酸铜类复杂化合物。Zn~(2+)质量浓度的增加促进了Fe~(2+)/SO_4~(2-)离子对的氧化,使Fe~(3+)更易达到过饱和状态,导致亚稳态铁矾物相的生成,形成以臭葱石为主并伴有微量铁矾和碱式硫酸铁的聚合体。当初始Zn~(2+)质量浓度为20 g/L时,沉砷渣中As,Fe和S的质量分数分别为23.5%,28.5%和3.7%,其中Zn主要以聚合物的形式包覆在臭葱石表面。  相似文献   

2.
针对当前砷碱渣处理过程砷碱分离效果差、分离的砷酸钠或钙砷渣安全处置难等问题,提出“水浸-水热沉砷-碳热还原”回收金属砷新工艺。以湖南某冶炼厂砷碱渣为对象,开展砷碱渣水浸砷锑分离、氧化钙水热沉砷砷碱分离、沉砷渣碳热还原回收金属砷等环节的工艺研究。研究结果表明:在浸出时间30 min、液固比3:1、浸出温度45℃、搅拌速度600 r/min的水浸条件下,砷、锑浸出率分别为95.3%和1.6%。在初始pH=11、水热温度180℃、反应时间6 h、Ca/As物质的量比为24:1的水热沉砷条件下,沉砷率达95.3%,沉砷渣主要为碳酸钙、氢氧化钙和砷酸钙。在碳粉添加量10%、温度1 000℃、还原时间3 h条件下,砷挥发率为93.1%,挥发产物砷质量分数达92.0%。砷碱渣“水浸-水热沉砷-碳热还原”新工艺,具有可实现砷锑碱梯级分离、砷以无毒的单质砷回收、沉砷剂氧化钙可循环使用、全流程未引入难处理的阴阳离子等优点。  相似文献   

3.
铜冶炼闪速炉烟尘氧化浸出与中和脱砷   总被引:9,自引:3,他引:9  
介绍了废酸氧化浸出铜冶炼闪速炉烟尘和漫出液中和沉淀砷、铁过程。从化学热力学和实验2方面研究了浸出液中以砷酸铁形式中和沉淀脱砷过程,并对砷酸铁沉淀的稳定性进行了研究。研究结果表明:闪速炉烟尘中铜、砷和铁的浸出率分别可达到83%,92%和30%,浸出液中的铁和砷的量比n(Fe)/n(As)约为1.50;控制适当的pH值中和沉淀砷、铁,可使铜存留于溶液中,而砷以砷酸铁形式进入固相中,从而达到铜、砷分离的目的;不稳定的砷酸铁沉淀物进一步转型后,则可作为无毒稳定渣丢弃。  相似文献   

4.
高砷酸性废水除砷的研究   总被引:1,自引:0,他引:1  
为使高砷酸性废水经处理后能达标排放,且不产生二次污染,需要进行分步处理.对高含砷废水(砷含量为10000mg/L左右)采用分步、催化氧化后絮凝沉淀的处理方法.一步处理:采用石灰乳,调pH=3~4去除SO42-;二步处理:采用NaOH溶液使pH=9~10,回收重金属;三步处理:加入催化剂—活性炭和Fe2 通入空气氧化,使溶液中的As(Ⅲ)和Fe2 氧化成As(Ⅴ)和Fe3 ,然后用石灰乳控制pH=6~9,使高价砷酸根与Fe3 生成难溶的FeAsO4沉淀.经过上述处理后溶液中的砷小于0.5mg/L,有很好的实用价值.  相似文献   

5.
采用铁碳微电解/H_2O_2耦合工艺预处理水溶液中砷,研究了溶液初始p H、铁碳球投加量、曝气流量、H_2O_2投加量、反应温度和初始总砷(TAs)浓度等因素对砷去除效果的影响﹒结果表明,在铁碳微电解体系中加入H_2O_2能明显提高水溶液中TAs和三价砷(As(Ⅲ))去除率﹒当溶液初始TAs和As(Ⅲ)浓度分别为539 mg/L和368 mg/L,溶液初始pH为2.5,铁碳球投加量为530 g/L,曝气流量为60 m L/min,H_2O_2投加量为2 m L,在15℃下曝气反应1 h时,溶液中TAs和As(Ⅲ)去除率分别达到61.94%和55.06%;然而,未加H_2O_2,在同样条件下处理,TAs和As(Ⅲ)去除率分别为47.07%和41.97%﹒  相似文献   

6.
根据目前广西区大量砷渣得不到有效利用的现状,以磷酸净化过程中产生的含砷废渣为原料,通过物相分析确定了碱浸出法回收砷的工艺,考察了浸出温度、摩尔比、液固比和反应时间等工艺条件对砷浸出率的影响。结果表明,n(NaOH)∶n(As2S3)是影响砷浸出率的主要因素,较适宜的碱浸工艺条件为:浸出温度为70℃,n(NaOH)∶n(As2S3)=6.0∶1,液固比=6.0∶1,反应时间为30 min,在此条件下砷浸出率可达97.1%。在现有基础上,该工艺为磷酸废砷渣的综合利用提供了一条简单高效的技术路线。  相似文献   

7.
在含石膏铁矾渣中掺入不同质量分数的煤粉,用球磨机将两者混合均匀,在不同温度下焙烧,以探究煤掺量对焙烧含石膏铁矾渣中硫的物相和含量的影响。研究表明:在不同焙烧温度下,煤掺量不超过20%时,S含量随温度升高呈下降趋势;煤掺量为15%时的含石膏铁矾渣,在1 000℃焙烧2 h后Fe含量最高(为26.51%),S含量最低(为4.59%),S的物相主要为CaSO_4和CaS;将其烧渣研磨后过100目筛,水洗后测得该渣中S含量减少至2.13%。通过探究煤掺量对铁矾渣中硫物相和含量的影响,为炼锌厂资源化利用铁矾渣提供了新思路。  相似文献   

8.
针对单宁沉锗工艺中存在单宁引入影响锌电解和单宁消耗量大导致工艺成本高的问题,开展中和沉淀-浸出富集锗研究,替代单宁沉锗达到富集锗的目的。以氧化锌烟尘浸出液为原料、工业氧化锌烟尘为中和剂,考察时间、pH、温度对中和沉淀效果影响,研究中和沉淀过程中锗、铁、砷、硅元素行为规律,同时考察中和渣浸出效果。研究结果表明:经两段逆流中和沉淀,一段温度为45℃、中和时间为2 h、pH=4.0~4.5,二段温度为45℃、中和时间为1.5 h、通氧量为60 L/h、pH=5.0~5.2,一段中和渣含锗1.13%,二段沉锗后液中锗质量浓度为1.98 mg/L,锗、铁、砷和硅的沉淀率分别为99.08%、26.72%、99.12%和95.36%,沉锗后液可直接返回锌冶炼系统。将中和渣经氧压-常压浸出后,氧压浸出渣中锗含量为3 148.9 g/t,浸出液锗质量浓度为1.72 g/L,锗、铁、砷和硅的浸出率分别为85.86%、25.46%、68.33%和11.39%。氧压浸出渣再经常压浸出后,常压浸出渣中锗含量为1884.9g/t,浸出液中锗质量浓度为331.1 mg/L,锗浸出率提升至95.96%,在富集锗的同时...  相似文献   

9.
硫化法除钼过程中杂质砷的行为   总被引:1,自引:0,他引:1  
根据已有的热力学数据,对钨钼硫化分离过程中杂质砷的各种配合物进行计算,绘制溶液中各含砷离子随pH及S与As的浓度比[S]/[As]变化的分布曲线,分析溶液中pH及硫化剂用量对砷硫化行为的影响规律。研究结果表明:控制一定的条件,将溶液中的含砷化合物较彻底地硫化为AsS43在热力学上是完全可能的;溶液的pH是影响硫化效果的关键因素,并且砷的硫化程度随硫化剂用量的增加而增大;在pH=7.5~9.5范围内,硫用量[S]/[As]>6时可使99%以上的As硫化为AsS43。  相似文献   

10.
针对碳酸盐体系下常规金属砷酸盐沉淀法无法高效选择性除砷这一难题,提出通过砷酸复盐选择性沉淀实现砷酸盐与碳酸盐选择性分离的方案。基于25℃时Mg2+-NH4+-AsO43--CO32--OH--H2O体系的热力学平衡图,研究通过砷酸复盐(MgNH4AsO4)沉淀实现砷酸盐和碳酸盐选择性分离的理论基础,并结合具体砷酸复盐沉砷实验,分析体系中CO32-,Mg2+和NH4+初始质量浓度对最终除砷效率及砷渣品位的影响。研究结果表明:增大CO32-质量浓度会降低砷酸复盐除砷率和砷渣品位,增加Mg2+初始质量浓度虽可提高除砷率,但会增加砷渣中MgCO3的摩尔分数,进而...  相似文献   

11.
硫酸铜脱除砷、铁的工艺研究   总被引:1,自引:1,他引:0  
将农用硫酸铜经一系列脱杂处理 ,得到电镀用硫酸铜 .用氧化、中和、水解方法 ,一次性脱除农用硫酸铜中的砷、铁 ,使之达到电镀用硫酸铜的质量要求 .研究表明 :用H2 O2 作氧化剂 ,可以有效地氧化As(Ⅲ )和Fe(Ⅱ ) ,且反应速度快 ;加入适量Fe2 (SO4) 3,能确保砷以FeAsO4形式除去 ;控制溶液pH值 ,可以使过量Fe3 以Fe(OH) 3沉淀形式除去  相似文献   

12.
通过焙烧脱砷和硫,并采用硫酸浸出金焙砂脱铁,研究不同条件下砷、硫和铁的脱除对高砷金精矿氰化浸金的影响。研究结果表明:金精矿中,砷、硫和铁的质量分数分别为3.20%,27.35%和23.50%;在焙烧温度为500℃,焙烧时间为4 h和空气流量为0.2 m~3/h条件下,砷和硫脱除率分别达到51.53%和79.16%;所得金焙砂经过质量分数为30%硫酸浸出,铁浸出率高达98.12%,酸浸渣中砷、硫和铁质量分数分别为0.10%,0.55%和0.44%;采用质量分数为6‰的氰化钠溶液浸出酸浸渣,金浸出率达98.05%;经过对砷、硫和铁进行脱除,金品位从32.98 g/t增加到68.22 g/t;金焙砂通过酸浸,单体金和裸露金总质量分数从93.87%增加到96.66%;低温焙烧和酸浸适合高砷金精矿氰化浸金。  相似文献   

13.
砷形态分析方法   总被引:3,自引:0,他引:3  
建立了水环境中的4种砷形态亚砷酸(As(Ⅲ))、砷酸(AS(V))、一甲基砷酸(MMA)、二甲基砷酸(DMA)的形态分析方法.在pH 6.0磷酸盐作流动相、梯度洗脱条件下,4种砷形态在IC-Anion-PW阴离子交换色谱上获得了分离.以20g/L的KzS2 08溶液作氧化荆,紫外催化氧化消解,可使有机砷完全转化为无机态的As(V).并在10%的盐酸栽流、20g/LKBH4+5g/LKOH溶液为还原剂的条件下,实现了氢化发生原子荧光检测.将所建立的方法用于地下水样品的测定,4种形态砷系物在O~20mg/L的质量浓度范围内都表现出良好的线性关系.各检出限均保持在约0.1/g/L水平,回收率控制在95%~110%以内,相对标准偏差≤3%.  相似文献   

14.
采用亨盖特(Hungate)厌氧滚管技术从锦州湾受砷污染的底泥中分离纯化出3株具有砷(V)还原活性的硫酸盐还原菌,分别编号为S2、S3-11和S13.16S r RNA基因序列分析显示这3株菌分别与梭菌属(Clostridium)内的不同"种"之间亲缘关系最近.在As(V)初始浓度为1.0 mmol·L-1时,菌株S3-11可在10 h内还原23.4%的As(V),但当As(V)初始浓度增加到3.0或5.0 mmol·L-1时,菌株S2和S13则相对于S3-11展现出更强的砷还原能力,菌株S2甚至可以在7.0 mmol·L-1的砷环境中生长并在24 h内将14.2%的As(V)还原.菌株S2为严格厌氧菌,为直杆状革兰氏阳性菌,产芽孢,其细胞大小约为2.0μm×0.6μm,16S r RNA基因序列与梭菌属中Clostridium sporogenes strain JCM 7849同源性为99%.菌株S2可利用蔗糖、葡萄糖、甲酸钠、乳酸钠和乙酸钠为唯一碳源生长,生长适宜温度为30℃.  相似文献   

15.
对生物氧化提金废液进行砷、铁分离,得到铁沉淀物用于制备透明铁黄.考察了pH值、搅拌速度、反应温度、表面活性剂用量等对铁黄性能的影响.结果表明,反应温度为45℃,pH值为3.5,搅拌速度为600 r/min,表面活性剂的质量分数为3%时,制得的铁黄形貌规则,540 nm处透光率达87%,符合国际标准ISO1248—1974合格产品的要求.利用冶金废液选择性沉淀得到的铁沉淀渣制备出透明铁黄,实现了铁的资源化回收利用.  相似文献   

16.
采用含砷废水沉淀还原法制备三氧化二砷   总被引:3,自引:2,他引:3  
介绍以含砷废水为原料采用沉淀还原法制备三氧化二砷.使用氢氧化钠调节含砷废水pH为6,过滤后加入硫酸铜,采用氢氧化钠调节pH为8,经沉淀、过滤、洗涤得到绿色亚砷酸铜粉末.使用水将亚砷酸铜调成浆料,通入SO2还原、过滤、蒸发、冷却结晶得到白色As2O3.实验结果表明:当水与亚砷酸铜液固比(体积与质量比)为4:1 mL/g,还原时间为1 h,还原温度为60℃时,亚砷酸铜中砷浸出率达到89.59%:当还原液pH为0,砷质量浓度为90 g/L,结品温度为28℃时,得到的产物As2O3纯度为95%,As2O3直收率为80.70%,产物质量达到中国有色金属行业标准(YS-T99-1997)中的三级标准.  相似文献   

17.
不采用预氧化步骤,直接使用三氯化铁吸附沉淀三价砷,系统考察了pH值、铁砷比、干扰离子浓度等因素对三氯化铁吸附沉淀三价砷的影响.在pH=4~10的范围内,吸附率随着pH值的升高先升后降,当pH=7时,吸附率达到最大.在铁砷比为30、pH为7时,三价砷的吸附率高达82.88%.含氧酸根阴离子如硫酸根、磷酸根、碳酸氢根对三价砷的吸附有竞争抑制作用,而碳酸氢根离子由于其特殊的pH缓冲效应,当溶液pH7时,其对吸附的影响表现为使溶液pH值上升进而小幅提高吸附率.钙、镁金属阳离子对三价砷的吸附有协同增强作用.  相似文献   

18.
利用含砷废酸制备亚砷酸铜,并将所得亚砷酸铜应用到铜电解液的净化。研究结果表明:使用NaOH溶液调节废酸pH值为6.0时,废酸中Pb,Cu,Fe和Mg杂质的去除率达到90%以上,砷保留率为89.0%;除杂后,加入CuSO4和NaOH溶液,当pH=8,n(Cu):n(As)=2:1,反应温度为20℃,反应时间为1h时,亚砷酸铜的产率达到98.2%;所得亚砷酸铜为非晶体,其中Cu与As的物质的量比为2.15;当铜电解液中加入20g/L亚砷酸铜时,铜电解液中Sb和Bi分别从0.65g/L和0.15g/L降到0.30g/L和0.07g/L,Sb和Bi去除率分别达到53.85%和53.33%。  相似文献   

19.
高砷酸性废水除砷的研究   总被引:2,自引:0,他引:2  
为使高砷酸性废水经处理后能达标排放,且不产生二次污染,需要进行分步处理.对高含砷废水(砷含量为10000mg/L左右)采用分步、催化氧化后絮凝沉淀的处理方法.一步处理:采用石灰乳,调pH=3~4去除SO4^2-;二步处理:采用NaOH溶液使pH=9~10,回收重金属;三步处理:加入催化剂—活性炭和Fe^2+通入空气氧化,使溶液中的As(Ⅲ)和Fe^2+氧化成As(V)和Fe^3+,然后用石灰乳控制pH=6~9,使高价砷酸根与Fe^3+生成难溶的FeAsO4沉淀.经过上述处理后溶液中的砷小于0.5mg/L,有很好的实用价值.  相似文献   

20.
采用氢氧化钠溶液浸出硫化砷滤饼,有效实现As与Cu和Bi等金属的分离,对浸出液经氧化脱硫后配入黑铜泥的酸性浸出液制备砷酸铜.研究结果表明:当NaOH的浓度为1.5mol/L、液固比10∶1、反应温度70℃、反应时间1.5h、搅拌速度为400r/min时,硫化砷滤饼中As的浸出率达到96.56%,Cu浸出率仅为0.12%;经氢氧化钠浸出,浸出渣中Cu、Bi的质量分数分别从原来15.93%和1.96%增加到56.31%和6.92%,使Cu和Bi得到高度富集;所制备的砷酸铜w(Cu)>29.8%,w(As)>26.19%,砷酸铜的结构式为Cu5As4O15.9H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号