共查询到20条相似文献,搜索用时 140 毫秒
1.
提出了两种改进的粒子群优化算法--引入了"预筛选"机制的PSPS0和线性改变最大速度vmax的LCVPSO,仿真实验表明,PSPSO和LCVPSO比标准PSO算法具有更好的性能. 相似文献
2.
通过分析现有的贝叶斯分类算法属性过程中存在的问题,对属性选择实质进行研究和抽象,提出了基于离散粒子群的贝叶斯分类算法,使用离散粒子群优化搜索完成其属性选择过程。算法使用一个搜索过程完成属性子集的选择,有效地避免了属性选择过程中的主观因素,实验结果表明该算法能够搜索出更有"价值"的属性子集,有更高的分类精确度。 相似文献
3.
杜玉平 《甘肃联合大学学报(自然科学版)》2012,(3):77-80
为提高粒子群算法的寻优速度和精度,提出了一种改进的粒子群算法,新算法是在标准粒子群算法的基础上对个体极值作变异操作.通过三个基准函数的测试,结果表明新算法在收敛速度、收敛精度和全局寻优能力方面均明显优于其它几种粒子群算法. 相似文献
4.
高春涛 《哈尔滨商业大学学报(自然科学版)》2010,26(4):442-445
粒子群算法是近几年来迅速发展起来的,得到广泛应用的一种新型模拟进化优化算法.研究表明该算法具有简单易于实现,可调参数少等优良性质.对粒子群算法理论及其进展情况做了阐述,介绍了该算法在理论和实际问题中的应用,并对其前景进行了展望. 相似文献
5.
针对传统粒子群寻优速度慢的缺点,引进了种群平均速度的定义。用平均速度表征粒子群的活跃程度,并作为粒子群惯性权重和学习因子调节的依据,加快了粒子群的寻优速度。针对粒子群容易陷入局部极值的缺点,提出将模拟退火算法引入粒子群算法,将粒子群的平行快速寻优能力和模拟退火的概率突跳特性相结合,保持了群体多样性,有效地避免了局部收敛。对2个典型测试函数的寻优问题进行仿真实验,实验结果验证了该算法的有效性。将改进的粒子群算法用于风电场风速概率分布模型的优化,与常规的统计方法相比,该方法具有更高的拟合精度。 相似文献
6.
针对协同粒子群优化算法存在的停滞现象,提出了一种改进的协同粒子群优化算法。采用优化法的子群协作方式,既保证了收敛速率,又可以防止陷入局部最优。同时引入综合学习策略,增加种群的多样性,防止种群出现停滞现象。在此基础上,又加入了扰动机制,进一步避免算法陷入局部最优。采用该算法对3个经典函数进行测试,并将其应用于Flow Shop调度问题,仿真实验结果表明:新算法有效克服了停滞现象,增强了全局搜索能力,比基本协同粒子群优化算法的优化性能更好。 相似文献
7.
针对粒子群算法易于坠入局部最优、早熟而造成求解成功率不高的问题引入回退算法的思想,提出一种用于求解工程约束的改进粒子群算法。对优化过程中不合约束的粒子不是简单抛弃,而使其回退到该粒子历史最优,进行下次搜索,这样求解过程中的粒子群搜索能力更强,以增强算法的成功率和运算速度、收敛性。通过对测试函数和工程实例进行仿真测试,并与标准粒子群算法对比,结果表明该算法是有效可行的。 相似文献
8.
一种改进粒子群算法及其在水轮机控制器PID参数优化中的应用 总被引:2,自引:1,他引:2
方红庆 《南京理工大学学报(自然科学版)》2008,32(3)
提出一种改进的粒子群优化算法,除了个体极值和全局极值外,改进算法中还引入了粒子群的平均位置.因此,粒子可以获得更多的信息来调整自身的状态.基于3个基准测试函数的测试结果显示改进粒子群优化算法具有较好的全局收敛性和收敛精度.计算机仿真结果表明:改进粒子群优化算法应用于水轮机控制器PID参数的优化设计可以有效地改善水轮机控制系统过渡过程的动态性能. 相似文献
9.
改进粒子群算法在作业车间调度问题中的应用 总被引:1,自引:0,他引:1
常桂娟 《四川师范大学学报(自然科学版)》2009,32(1)
调度问题是一类典型的NP-hard问题,传统粒子群优化算法在解决该类问题上具有一定的局限性.通过分析其优化机理,提出了改进粒子群算法,结合了粒子群优化算法的全局搜索能力和交换粒子位置的局部搜索能力,提出了新的粒子编码方法--基于粒子坐标值排列编码(PPP),发展了一种快速、易实现的新的混合启发式算法.大量实验仿真结果表明本算法可以有效求解作业车间调度问题,通过与遗传算法比较,验证了改进粒子群算法是求解Job-shop调度问题可行而高效的方法. 相似文献
10.
粒子群优化(PSO)算法是一种新兴的基于群体智能的进化算法.介绍了PSO算法的基本原理及各种改进方法,总结了近年来PSO在电力系统中的应用研究成果,主要涉及负荷经济分配、机组组合问题、输电网规划、最优潮流计算、无功优化等领域,指出了PSO算法的广阔应用前景。 相似文献
11.
混合式朴素贝叶斯分类模型 总被引:3,自引:0,他引:3
为了降低朴素贝叶斯分类模型的独立性假设约束,提出一种混合式朴素贝叶斯分类模型(MBN:Mixed Naive Bayes)。通过分析贝叶斯定理,把条件属性集合划分成若干个独立的属性子集,用树增广朴素贝叶斯分类对属性子集分别进行分类学习,通过公式进行整合。将该模型算法与朴素贝叶斯及树增广朴素贝叶斯进行实验比较,实验结果表明MBN分类器在多数数据集上具有较高的分类正确率。 相似文献
12.
13.
提出了一种DEA与PSO相结合的混合算法,即用DEA算法对PSO中适应值较差的粒子群进行重组和优化。将此混合算法与PSO算法同时用于一些常见测试函数的优化问题,通过对比表明:与PSO算法相比,DEA-PSO混合算法的优化效果更佳。用DEA-PSO混合算法训练神经网络,并将其用于丙烯腈收率软测量建模,结果显示了该混合算法在丙烯腈软测量建模中的可行性与有效性。 相似文献
14.
人工智能在电子邮件分类中的应用研究 总被引:6,自引:0,他引:6
利用人工智能理论设计了一个电子邮件智能分类系统Satellite Filter,介绍了它的结构和算法,并通过实验论证了它的可行性和有效性。 相似文献
15.
针对期望最大值算法(EM)对图像统计模型初始值敏感和容易陷入局部极值的弱点,结合粒子群优化算法(PSO)全局寻优的特点,提出一种有效解决此问题的EM-PSO混合算法.该算法将粒子分为最优种群和进化种群,分别用EM算法和PSO算法进行更新.然后选取最优粒子群作为EM算法的初始值.仿真结果表明,用EM-PSO算法拟合图像统计模型比用EM算法拟合图像统计模型更准确. 相似文献
16.
17.
介绍了由ChristianHidber提出的在线挖掘关联规则算法Carma,提出了该算法的若干改进,减弱了原算法第一步有交易的子集v被插入集合V的条件,同时改进了maxMissed的计算公式,使其计算更为简单。实验证明,以上改进提高了算法的速度。 相似文献
18.
提出了一种改进的粒子群优化(IPSO)算法以解决可靠性问题.IPSO算法使用3种策略来改进粒子群优化算法(PSO)的速度更新步骤,这有利于提高算法对解空间的开发能力.另外,一种动态调整的惯性权重被引入到速度更新中以平衡IPSO算法的全局搜索和局部搜索.实验结果表明,在解决可靠性问题上,IPSO算法比其他两种粒子群优化算法具有更强的收敛性和稳定性.IPSO算法是解决可靠性问题的一个有效的选择. 相似文献
19.
20.
建筑结构损伤前后固有频率的变化包含了结构损伤位置和程度的信息,在此理论基础上,构造了BP神经网络的输入参数.针对BP梯度下降算法导致的收敛速度慢和易陷入局部最小的缺点,引入粒子群演化(PSO)算法来优化神经网络各层间的连接权值.首先通过有限元法提取结构固有频率的变化,结合PSO对神经网络进行训练,然后分别对结构的损伤位置和损伤程度进行识别.计算分析结果表明,PSO的引入,相较于单纯的BP算法,该方法在结构损伤检测中取得更优的识别效果. 相似文献