首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
为揭示高硫矿山硫化矿石吸附孔隙分形特征,采集FeS-FeS2组合物进行低温氮吸附实验,测量4种FeS-FeS2组合物的比表面积、总孔容及平均孔径,揭示其孔隙特征. 运用FHH模型计算得到4种FeS-FeS2组合物的分形维数,并分析不同FeS-FeS2组合物分形维数与孔隙参数、吸附能力的关系. 研究表明,4种样品低温氮吸附-解析曲线虽在形态上略有差异,但均属于IV型;FeS-FeS2组合物气体吸附主要集中在2~8nm介孔上;随着FeS-FeS2组合物中FeS质量分数增加,样品分形维数也会增大;分形维数增大,FeS-FeS2组合物的比表面积和总孔容相应增大,平均孔径相应减小,孔隙结构越复杂,孔表面变得越粗糙;分形维数与FeS-FeS2组合物的气体吸附能力呈现正相关性,即分形维数越大,吸附能力越强. 因此,FeS-FeS2组合物中FeS质量分数的增大引起分数维数增加,有助于FeS-FeS2组合物表面吸附存储氧气,更易使硫化矿石发生氧化自燃.  相似文献   

2.
为了研究煤体在构造作用影响下孔隙结构与分形特征,本文采用低温氮气吸附法、压汞实验等方法,并结合分形理论对三甲煤矿突出孔洞内外煤样孔隙分布进行定量分析。通过MIP与N2GA联合分析,软硬煤临界孔径分别为59nm和86nm。硬煤孔容主要分布在100nm以下的孔隙中,构造煤各孔容分布差异不大,其中中孔和大孔孔容明显高于硬煤,并且构造煤比表面积比硬煤增大4倍多,孔容多出24.5%。根据分形理论分析发现,构造煤渗流孔和吸附孔分形维数分别为3.03和3.77均高于原生煤3.01与3.72;构造煤热力学分形维数高达2.916,构造煤具有更加复杂的孔隙结构和更加粗糙的孔隙表面。  相似文献   

3.
为揭示硫化矿石吸附孔的分形特征,采集国内某铜矿矿样进行低温氮吸附实验。利用Quadra Sorb SI系列比表面测定仪分析粒径分别为0.300,0.125和0.088 mm 3种矿样的孔隙特征;运用FHH模型计算出各个矿样的分形维数,进一步分析硫化矿样的气体吸附能力与孔隙参数、分形维数之间的关系。研究结果表明:硫化矿样粒径越小,矿样微孔的比表面积和孔体积越大;硫化矿样对气体吸附一般发生在孔径为3~4 nm的微孔上;分形维数增大,微孔含量随之增高,比表面积也相应增大,孔表面则表现越粗糙且趋向于三维空间;分形维数反映了矿样的气体吸附能力,即分形维数与吸附能力具有正相关性。因此,由于硫化矿样粒径减小而引起的复杂孔隙结构及高分形维数,使得矿样更加容易吸附空气中的氧气而发生氧化自燃。  相似文献   

4.
为揭示毛乌素沙地不同平茬周期的人工沙柳林地土壤孔隙的分形特征,阐明平茬周期对沙柳林地土壤孔隙结构特征的影响,以平茬周期为3、5、7a进行定期抚育的沙柳林地土壤为研究对象,通过低温氮气吸附试验研究了不同平茬周期沙柳林地0~50 cm土壤的孔隙结构参数及等温吸附曲线,采用Frenkel-Halsey-Hill模型计算孔隙表面的分形维数,分析了林地土壤各孔隙结构参数之间的关系以及孔隙表面分维数与各孔隙参数之间的关系.结果表明:①该研究区的林地土壤孔径以中孔(2~50 nm)为主,有少量的微孔(≤2 nm)和大孔(≥50 nm);②不同平茬周期的沙柳林地土壤孔隙结构分形特征明显,分形维数范围为2.4971~2.7797,平均为2.6849,可较好地描述林地土壤孔隙表面和孔隙结构的分形特征;③不同平茬周期下林地土壤分形维数与各孔隙结构参数有密切关系,分形维数越大,孔隙表面越粗糙,不规整程度越高;④植被的平茬影响其再生复壮,针对沙柳为主要防风固沙树种的毛乌素沙地,平茬周期为5a时较适宜林地土壤发育并保持结构稳定.可见合理的平茬周期有利于当地人工林的生长和土壤稳定发育,因此,研究结果可为当地沙柳人工林的管理和经营提供理论指导,促使沙柳人工林达到预定的生产经营目标.  相似文献   

5.
为研究构造煤孔隙微观结构及其对瓦斯吸附的影响,采用压汞实验及PCT高压吸附实验,针对澄合矿区典型构造煤煤样进行孔隙结构分析及吸附特性测定,通过实验数据计算煤样孔隙体积及表面分形维数,分析构造煤微观孔隙结构对瓦斯吸附特性及吸附常数a、b值的影响。研究结果表明:煤样总孔容以大孔贡献为主,总比表面积微孔占比最高,各煤样间大、中、小及微孔占比基本相近,煤样坚固性系数与其总孔容成反比;吸附常数a与煤样微孔孔容、比表面积呈正相关关系,吸附常数b随着煤样大孔孔容占比、微孔占比的增大而增加;随着总比表面积增加,单位质量煤瓦斯吸附量逐渐增加,即微孔比表面积越大,瓦斯吸附能力越强;煤样孔隙体积及表面分形维数均可分为两部分,大、中孔隙分形维数在2~3之间,该段分形特征较为明显且孔隙结构复杂,孔隙体积分形维数与吸附常数a呈正相关关系。  相似文献   

6.
明确页岩纳米孔隙表面分形特征有助于深化对页岩吸附机理与吸附模型的认识。以五峰组/龙马溪组、延长组页岩为研究对象,基于氮气吸附法孔隙结构参数,计算了页岩纳米孔隙表面分形维数,并与泥岩、致密砂岩分形维数对比,揭示了有机质、黏土矿物等对孔隙表面分形特征的影响。研究表明,五峰组/龙马溪组页岩纳米孔隙表面分维值为2.7~2.9,延长组页岩为2.3~2.7,其分维值取决于10 nm以下孔隙累计表面积大小;页岩分维值与有机质成熟演化阶段正相关,而与有机质含量关系复杂;有机质孔与黏土矿物晶间孔表面均具有明显的分形特征,该孔隙发育是页岩具有表面分形特征的根本性原因,但前者的分维值显著大于后者。有机质与黏土矿物表面呈现高度粗糙性,严重偏离光滑平整特性,因此,甲烷在页岩纳米孔内的吸附属于典型的非均匀固体上的吸附。  相似文献   

7.
南方上奥陶统五峰组-下志留统龙马溪组海相页岩是中国页岩气主力开发层位,页岩微观孔隙结构特征的研究对于页岩含气性和开发储量的评价有重要意义。采用场发射扫描电镜和低温氮气吸附实验方法对蜀南地区长宁区块五峰-龙马溪组页岩微观孔隙结构进行了定性评价和定量表征。实验结果表明,蜀南地区五峰-龙马溪组页岩以有机质孔隙为主,局部可见粒间孔和粒内孔发育。氮气吸附回滞环属于H4型,对应纳米级孔隙类型为狭缝型;五峰-龙马溪组页岩平均比表面积17.35 m~2/g,平均孔体积16.70 mm~3/g,平均孔径9.82 nm;页岩纳米级孔隙表面具有分形特征,分形维数平均值为2.681;有机碳含量的增加使得纳米级孔隙数量增多,页岩分形维数增大,孔隙表面粗糙程度增大,页岩比表面积增大,页岩吸附能力增强。  相似文献   

8.
硫化过程中钙基脱硫剂孔结构的非线性变化特性   总被引:1,自引:0,他引:1  
以热重天平(thermogravimetric analyzer,TGA)为实验台,采用N2吸附法测定孔结构参数,研究了硫化反应中钙基脱硫剂不可进入孔隙的形成、孔隙分形维数以及分形结构的变化特性等,结果表明:脱硫剂中不可进入孔隙的形成主要出现在硫化反应的开始阶段,随着硫化反应的进行,脱硫剂孔结构的分形维数不断减小,且孔隙分布与分形维数之间满足Friesen关系方程。  相似文献   

9.
石油焦燃烧过程中孔隙结构变化实验研究   总被引:3,自引:0,他引:3  
应用氮气等温吸附/脱附法分析了2种石油焦在燃烧过程中孔隙结构的变化.采用BET法和t法测定不同燃尽率的石油焦的比表面积和孔容积,并用FHH模型求得各样品的表面分形维数.实验结果表明:石油焦的孔隙结构在燃烧过程中变得发达,比表面积和孔容积较原样明显增大且变化基本趋势一致;石油焦的燃烧具有分形动力学的行为特征,且表面分形维数的变化趋势和比表面积和孔容积不同.燃烧时分形维数接近3,表明石油焦的燃烧反应在空间网格结构的内、外部同时发生.  相似文献   

10.
为研究宁夏灵新矿不粘煤的孔隙结构特征对CO吸附的影响,开展了低温液氮吸附试验和CO吸附试验,分析了不粘煤在不同粒径下的孔隙结构特征,讨论了比表面积和孔容分布对CO吸附的影响;利用FHH模型计算了煤样孔隙的分形维数,建立了分形维数与Langmuir参数VL、PL之间的关系,明确了煤样孔隙分形特征对CO吸附的影响。结果表明:在各类孔隙结构中,微孔数量最多;随着煤样粒径减小,煤样总比表面积和总孔容均增加,煤样总比表面积、总孔容与VL呈正相关;煤样在低、中、高3个压力阶段具有不同的吸附特性和分形特征,煤样对CO吸附受分形维数D1和D2影响,随着D1增大,煤样对CO的吸附能力增强,随着D2增大,煤样对CO的吸附能力逐渐减弱;分形维数D1与VL呈正相关,与PL呈负相关,分形维数D2与VL和PL之间相关性不明显。研究结...  相似文献   

11.
基于氮气吸附法的渝东南下寒武统页岩孔隙的分形特征   总被引:3,自引:0,他引:3  
 分形维数是多孔介质不规则程度的度量,以渝东南下寒武统页岩的氮气吸附法测量结果为研究对象,采用FHH 模型的分形维数计算方法,得到渝东南下寒武统页岩的分形维数。研究结果表明,渝东南下寒武统页岩孔隙的分形维数具有明显孔径分界点,即具有双重分形特征,小孔隙分形维数D1变化范围在2.3559~2.6577,平均值为2.488,大孔隙分形维数D2变化范围在2.5971~2.8746,平均值为2.7631;大孔隙分形维数的平均值大于小孔隙分形维数的平均值,说明大孔隙结构的复杂程度大于小孔隙结构的复杂程度;页岩孔隙的分形维数与有机碳(TOC)含量、吸附气量、比表面积和孔容呈正相关,其中与孔隙的比表面积和孔容的相关性显著,而与黏土矿物含量呈弱负相关。  相似文献   

12.
为了更好地了解页岩纳米孔隙特征及其对甲烷吸附性能的影响,对四川盆地上三叠统须五段的6个页岩样品进行了分形分析。通过对氮气吸附/解吸等温线的分析表明,页岩在相对压力为0~0.5和0.5~1时具有不同的吸附特征。利用Frenkel-Halsey-Hill(FHH)方程计算得到两个分形维数D_1和D_2。甲烷的吸附性能随着D_1和D_2的增加而增强,其中D_1对吸附有着更显著的影响。进一步研究表明,D_1代表由于页岩表面不规则性产生的孔隙表面分形特征;而D_2代表的是孔隙结构分形特征,其主要受页岩组分(有机碳含量、石英、黏土矿物等)和孔隙参数(平均孔径、微孔含量等)控制。更高的分形维数D_1对应更不规则的孔隙表面,为甲烷吸附提供更多的空间。而更高的分形维数D_2代表更复杂的孔隙结构以及孔隙表面更强烈的毛细凝聚作用,进而增强甲烷的吸附能力。因此,页岩孔隙表面越不规则,孔隙结构越复杂,甲烷吸附能力越强。  相似文献   

13.
为研究沁水盆地中高煤级煤的孔隙结构特征,采用低温液氮吸附实验测定了不同煤样比表面积及孔径分布数据,依据吸附-解吸曲线和分形维数对煤岩孔隙系统进行分类.结果表明:煤层微小孔较发育,具有比表面积适中(0.418~0.902 m2/g)、平均孔径小(14.6~21.0nm)、孔容小(0.001 86~0.004 53 cm3...  相似文献   

14.
为明确东道海子凹陷乌尔禾组凝灰岩孔隙结构与主控因素,基于低压CO2吸附、低温N2吸附以及高压压汞实验,对凝灰岩全尺寸孔隙孔径进行表征;基于分形理论,对凝灰岩微孔和介孔的孔隙复杂程度和非均质性进行定量表征,阐明影响与控制凝灰岩孔隙结构的主要因素。结果表明,凝灰岩主要发育锥形管孔、开口的锥形平板孔和狭窄的平行板孔等形态孔隙,孔径呈多峰分布;凝灰岩总孔体积介于0.005 4~0.047 8 cm3/g,各类孔隙发育程度差异较大,凝灰岩总孔体积主要由介孔所提供,介孔体积介于0.004 2~0.041 3 cm3/g,平均0.026 0 cm3/g,平均占比75.10%;其次是微孔和宏孔,微孔体积介于0.000 6~0.005 5 cm3/g,平均0.003 1 cm3/g,宏孔体积介于0.000 6~0.005 3 cm3/g,平均0.002 8 cm3/g,二者的占比分别为11.5%和13.4%;...  相似文献   

15.
煤储层具有复杂的孔隙结构,在吸附甲烷气体过程中伴随能量变化。为研究煤储层孔隙和甲烷吸附过程中能量变化的非均质特性,使用分形维数分析煤孔隙的非均质性,运用吸附势和表面自由能理论分析等温吸附过程中的能量变化非均质性。结果表明:PY-1、PB-1、PB-2样品主要发育微孔,PY-2样品主要发育大孔,不同样品的孔隙分布差异明显;微孔是吸附甲烷的主要场所,但并非是影响甲烷吸附量的决定因素。煤的孔隙结构和本身性质影响了煤吸附甲烷的非均质性选择,镜质组含量越高,孔隙结构越复杂,孔隙分形维数越大,非均质性越强;甲烷吸附量越高,吸附势和表面自由能变化越大。  相似文献   

16.
为了研究和分析石墨纤维表面与孔隙的结构和分形性质,采用场发射扫描电子显微镜、电感耦合等离子体发射光谱仪、全自动物理吸附分析仪对其进行测试与表征.研究结果表明:石墨纤维以圆柱状存在,直径约为12~18 μm,表面较光滑,缺陷较少,有利于气体吸附;石墨纤维碳的质量分数约为95.86 %,还含有少量的N、H、O、S和微量的Ca、Fe、Mg、Si、Al等元素,生产过程中留下的孔道不多;石墨纤维的比表面积较大,其微孔体积占总孔体积的97.98 %,平均孔径在微孔区域,且孔径分布较窄,包含大量0.84 nm左右和少量1.21 nm左右的微孔,较丰富的微孔结构使其具有良好的吸附性能;石墨纤维的表面与孔隙具有较好的分形特性,分形维数分别为2.11和2.99,是一种有工业前景的吸附材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号