首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
碳泡沫先驱体酚醛泡沫制备工艺研究   总被引:4,自引:0,他引:4  
通过分析发泡剂、匀泡剂和固化剂的用量与酚醛泡沫密度及性能的关系,确定了制备酚醛泡沫的最佳发泡工艺。以苯酚和甲醛为主要原料,碱性催化合成改性酚醛树脂,再加入正戊烷、tween-80和20%硫酸等制备了酚醛泡沫。用红外光谱和数码显微镜等方法测定该泡沫的化学组成、泡孔结构、孔径分布及其他相关理化性能,结果表明,该工艺制备的酚醛泡沫具有优良的阻燃、隔热保温性能,是理想的碳化和石墨化用酚醛泡沫。  相似文献   

2.
无序多孔碳材料微结构模拟研究进展   总被引:1,自引:0,他引:1  
无序多孔碳材料微结构在人们研究流体在受限空间中的行为规律的有重要意义,计算机模拟是研究无序多孔碳材料的微结构的重要手段。根据模拟原理的不同,可将模拟方法分为基本单元构建法、逆向Monte Carlo(RMC)重建法和仿真过程法三类。着重介绍了基本单元构建法和仿真过程模拟法的实现原理、建模方法和发展现状。3种不同途径的建模方法中基本单元构架法建模原理相对简单,所需计算资源最少,但是所能表征的微结构特征也有限。逆向Monte Carlo重建法则需要比较精确的实验数据作为支撑,所建模型的真实性较强,但是受实验数据限制,尚不能扩展到介孔尺度。仿真过程法模拟原理复杂,所需计算量很大,目前所作的尝试只是一定简化了的过程模拟,但随着技术的进步,该方法的发展潜力也最大。这3种方法均有用,以后将逐步过渡到以仿真过程法为主的多孔碳微结构建模方法。  相似文献   

3.
多孔泡沫铝性能研究现状及应用前景展望   总被引:13,自引:3,他引:13  
多孔泡沫金属是一种内部含义许多空隙的新型材料。由于其具有非泡沫金属所没有的优异特性,因而在一般工业领域特别是高技术领域受到越来越广泛的重视,也引起了国内外浓厚的研究兴趣。多孔泡沫铝是目前研究最为成熟的一种泡沫金属材料,本文对国内外泡沫铝性能研究现状及其应用予以综合概述,并对泡沫铝应用前景进行展望,以期推动泡沫铝的进一步研究和应用。  相似文献   

4.
多孔硅的制备与微结构分析   总被引:1,自引:0,他引:1  
本文通过电化学阳极氧化方法制备了多孔硅,并对它的微观形貌和红外吸收光谱进行分析,结果表明多孔硅的微观结构与电流密度、腐蚀流配比有关。随着电流密度的升高,氢氟酸浓度的增大,多孔硅的微观结构将从“海绵”状转变成“树枝”状,随腐蚀时间延长,Si-H键和Si-O键明显地增强,这有利于改善发光。  相似文献   

5.
以衰老树叶为碳源,采用先预碳化后活化的方法合成生物质多孔碳,采用XRD、SEM、TEM、N2吸附-脱附,FT-IR等测试手段对其结构表征.结果显示,当碳碱比为3,400℃预碳化3h,600℃高温活化1h后样品以无定型碳形式存在,透光性好,呈现多孔结构,比表面积为1065m2·g-1,孔容为0.91 cm3·g-1,且孔...  相似文献   

6.
泡沫铝是一种新型超轻多孔金属,具有超轻、高比强、高比刚、阻尼减振、高冲击能量吸收和优异的热、电、磁性物理和应用性能,实现了结构材料的多功能化,因而展现了广阔的应用前景。泡沫铝可以通过采用熔体发泡法、渗流法、熔模铸造和电镀法、粉末冶金法和吹气法等制备,相应的方法所制备出的泡沫铝具有各自的孔结构,因而可以针对于满足相应的高技术应用需求。  相似文献   

7.
多孔材料的特性分析   总被引:1,自引:0,他引:1  
席本强 《科技信息》2007,(23):18-18,31
本文综述了多孔材料的特点、类型,分析了多孔材料的各种特性并讨论了多孔材料发展和应用的制约因素,进一步讨论了多孔材料研究的发展方向。  相似文献   

8.
采用浓乳液模板法制备三聚氰胺-间苯二酚-甲醛多孔树脂,将其热解后得到了可用于二氧化碳吸附的氮掺杂多孔碳材料。研究了浓乳液模板的分散相体积分数和三聚氰胺含量对多孔碳材料微观形貌的影响,结果表明,在浓乳液模板分散相体积分数为90%的条件下制备的多孔聚合物具有丰富的通孔结构。经过热解后,得到了兼具无机碳骨架和有机氮活性位点的氮掺杂多孔碳材料。进一步研究了不同热解温度和三聚氰胺含量对多孔碳材料二氧化碳吸附性能的影响,二氧化碳的吸附容量最高可达到3.32 mmol/g,同时表现出良好的选择吸附性和再生性。  相似文献   

9.
以咖啡渣为原料, 利用碳化与活化反应制备出多孔的碳材料, 并利用X射线衍射、 扫描电子显微镜、 Raman光谱和N2吸附脱附等方法分析该材料的物理化学性质. 结果表明: 该材料具有较高的石墨化程度; 当质量电流密度为0.1 A/g时, 其首圈放电和充电质量比容量值分别为1 029 mA·h/g和461 mA·h/, 且循环稳定性较好, 其质量比容量远高于石墨的理论容量(372 mA·h/g).  相似文献   

10.
基于多孔有机聚合物及其衍生碳材料在锂离子电池负极材料领域的发展和研究现状,探究了一种孔径可控的多孔碳纳米球的合成方法 .首先,设计合成了6,13-双(双4-溴苯基亚甲基)并五苯化合物,并以此为单元制备了一系列具有规则形貌的新型多孔有机聚合物.通过将不同孔径尺寸的聚合物在不同温度下进行碳化,以此探究碳化温度对材料电化学性能的影响.根据得到的数据可知,多孔碳材料THF-800具有最好的循环稳定性和优异的倍率性能,由此证明THF-800在锂离子电池负极材料领域具有潜在应用价值.此外,对锂离子电池负极材料孔径尺寸进行了调控,可以促进有机材料在锂离子电池中的应用,最终拓展了多孔有机聚合物衍生碳材料在锂离子电池负极材料中的应用范围.  相似文献   

11.
通过多孔炭对酚类化合物、 Cr(Ⅵ)和I2的吸附, 研究了多孔炭的表面物理化学性能对不同电性物种吸附能力的影响. 发现多孔炭对酚类化合物及Cr(Ⅵ)的吸附以化学吸附为主, 其中对酚类化合物的吸附由羧基与内酯基的表面密度合量决定, 对Cr(Ⅵ)的吸附由表面官能团中羧基和内脂基含量的合量决定; 多孔炭对I2的吸附以物理吸附为主, 由孔容决定.  相似文献   

12.
对AR中间相沥青进行300℃预氧化处理,获得氧化沥青,以AR中间相沥青和氧化沥青为原料制备泡沫炭,采用氮/氧、碳/硫分析仪和热分析仪分析原料的元素含量和热分解过程,采用扫描电子显微镜观察泡沫炭的微观形貌,研究了300℃预氧化处理对AR中间相沥青元素和热重的影响机制.结果表明,AR中间相沥青经300℃预氧化2 h,4 h和6h后,沥青中氧元素含量由原来的0.85%增加到6.60%,10.47%和11.31%.AR中间相沥青经预氧化后获得了孔径较小的泡沫炭材料.当预氧化时间为6 h时,炭化和石墨化泡沫炭的压缩强度分别为12.07 MPa和9.06 MPa.  相似文献   

13.
以多巴胺为前体,利用高温碳化的方法制备多孔碳纳米微球.多孔碳纳米微球通过透射电子显微镜和X射线粉末衍射图谱来进行表征.利用多孔碳纳米微球修饰玻碳电极,构建电化学传感器用于4-氨基苯酚的检测.结果表明,该传感器实现了对4-氨基苯酚的灵敏检测,线性检测范围为0.1~120μmol/L,检出限为20nmol/L.此外,该方法具有稳定性好、选择性高等优点.  相似文献   

14.
乳液法酚醛树脂的合成及其在摩阻材料中的应用   总被引:3,自引:0,他引:3  
通过对乳化剂的筛选,成功地合成了乳液法酚醛树脂,并对其热稳定性进行了探讨,该树脂的乳液中均匀混入丁腈胶乳,可以用于摩阻材料(刹车片)的生产,制品性能完全符合国家标准,同时,应用乳液法酚醛树脂可避免生产摩阻材料溶剂的污染。  相似文献   

15.
以酚醛树脂为前驱体,以聚乙二醇为致孔剂,采用聚合物共混法制备超级电容器用中孔炭电极材料. 采用N2吸附法测试了炭材料的比表面积和孔结构参数. 采用恒流充放电、循环伏安、交流阻抗等评价了其在1mol·L-1Et4NBF4/PC有机电解液中的电化学双电层电容性能. 结果表明,酚醛树脂和聚乙二醇等比例共混炭化制备的多孔炭的比表面积为618m2·g-1,中孔率为59.7%,比电容为32F·g-1,大电流性能和循环性能良好.  相似文献   

16.
粘结剂炭的结构与抗氧化性   总被引:2,自引:0,他引:2  
研究了中间相沥青和酚醛树脂粘结剂及其热解炭的抗氧化性,通过X-ray衍射,扫描电镜,粘结剂残炭率及炭真密度测定,综合评价中间相沥青用作镁炭砖粘结剂的可行性,结果表明,中间相沥青的抗氧化明显优于酚醛树脂,中间相沥青炭结构致密,有取向性,呈石墨化炭结构,而酚醛树脂质炭结构疏松,无取向性,呈难石墨化炭结构,中间相沥青残炭率为65.53%,炭真密度为1.91g/cm^3,酚醛树脂残炭率为49.40%,炭真密度为1.73g/cm^3,可以看出,粘结剂炭的抗氧化性取决于它的显微结构。  相似文献   

17.
以乙二醇苯醚和甲醛为原料,经缩聚反应,先得到乙二醇苯醚一甲醛树脂(FQ),再分别与苯磺酰氯、巯基乙醇反应,得到含硫、氧酚醛型螯合树脂.测定了该树脂对重金属离子Cu^2 、Pb^2 、Ni^2 、Zn^2 、Ag^ 、Hg^2 的吸附容量,研究了该树脂的吸附动力学及pH值对静态吸附性能的影响.结果表明:该树脂对Ag^ 、Hg^2 、Cu^2 、Ni^2 、Zn^2 、Pb^2 的吸附容量分别为1.04、0.85、0.73、0.59、0.39、0.17mmol/g。  相似文献   

18.
以花瓣球形的聚苯胺(PANI)为前驱体,经炭化和KOH活化制备出球形结构的多孔炭.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、低温N2吸脱附、X射线衍射(XRD)以及X射线光电子能谱(XPS)等分析手段对多孔炭的形貌、结构和元素组成进行表征,并探讨了炭化温度对多孔炭电化学性能的影响.结果表明:炭化和活化温度分别为750℃和850℃时,获得的多孔炭为直径约2μm的球形粒子,其比表面积高达2 496.6m2/g,并具有合适的多级孔结构分布.当电流密度为0.5A/g时,合成的多孔炭比电容值高达247F/g;当电流密度增大到20A/g时,比电容量仍有182F/g,表现出优良的倍率性能;在电流密度为10A/g的条件下,经1 000次恒电流充放电循环后,其比电容量保持率为102%.  相似文献   

19.
以蔗糖为碳源、硼酸为硼源,采用水热法和化学活化法制备出硼掺杂多孔碳球(boron-doped porous carbon spheres,B-PCS),利用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)、傅里叶红外光谱(FTIR)和比表面积(BET)对B-PCS进行物理表征分析,探究B-PCS吸附Cd(Ⅱ)的热力学和动力学。结果表明,B-PCS为球状无定型结构的碳材料,直径为1~6μm,比表面积达672.2 m~2·g~(-1),孔体积为0.356 cm~3·g~(-1),且表面含有大量的含氧和含硼官能团,这些特性可以为Cd(Ⅱ)提供更多的活性吸附位点,有利于提高B-PCS对Cd(Ⅱ)的吸附性能。动力学符合准二级动力学模型,B-PCS对Cd(Ⅱ)的吸附为化学吸附控制过程,内扩散和Boyd模型表明粒子内扩散不是控制吸附速率的唯一因素。Freundlich方程能更好地模拟吸附等温线,最大理论吸附量为41.5 mg·g~(-1),0R_L1,说明B-PCS吸附Cd(Ⅱ)为有利吸附。吉布斯自由能(ΔG~0)小于0,焓变(ΔH~0)大于0,熵变(ΔS~0)大于0,表明B-PCS吸附废水中的Cd(Ⅱ)为自发、吸热、熵增的过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号