首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
主要研究了镉及镉,锌共同作用时对水芹菜的毒害影响,测定了叶绿素含量,可溶性蛋白含量,超氧阴离子含量,硝酸还原酶活性,过氧化物酶活性等生理指标的变化,结论是:超氧阴离子含量锌与表现为协同效应,而其他指标在wZn/Wcd大于1/2时为拮抗效应,而小于1/2时表现为协同效应。  相似文献   

2.
分析了鹰嘴豆多肽与其他抗氧化剂(VE、VC、BHT)的协同效应.VE和VC对鹰嘴豆抗氧化多肽的还原能力有显著的增效作用,且VC与鹰嘴豆抗氧化多肽协同作用较VE与之更强.BHT与鹰嘴豆抗氧化多肽未表现出协同作用.研究多肽在DPPH体系中协同效应,鹰嘴豆抗氧化多肽与BHT及VC均未显示协同效应.用邻苯三酚自氧化法测鹰嘴豆抗氧化多肽对超氧阴离子抑制的协同效应,VC及VE与多肽未显示出显著抑制超氧阴离子的协同效应,而鹰嘴豆抗氧化多肽与BHT表现出明显的抑制超氧阴离子的协同效应.  相似文献   

3.
本文探讨了萤光法联合测定微量锌和镉.将试样溶液的pH值调节至7.4,在524nm测量锌、镉的7-碘-8-羟基喹啉-5-磺酸(铁试剂)络合物的总萤光强度,其次在pH5.0及过量KI存在下测量溶液的萤光强度以确定锌含量,然后参照锌镉的总萤光强度求出镉含量.方法的测量范围为锌镉总量0.2-2ppm,相对误差为±10%.AI~(3 ) 、Mg~(2 )、Fe~(3 )、Cu~(2 )、Co~(2 )、Ni~(2 )等离子有干扰,但多数干扰离子可用阴离子交换树脂分离法加以消除.  相似文献   

4.
海泡石对污染土壤镉、锌有效态的影响及其机制   总被引:13,自引:0,他引:13  
通过土壤原位钝化与等温吸附试验, 研究了海泡石黏土矿物对污染土壤中镉、锌有效态及 pH 对海泡石吸附镉、锌的影响。结果表明: 海泡石黏土矿物加入土壤后, 显著降低了土壤中水溶态镉、锌和可提取态镉、锌含量。在海泡石最大施用量( 土重的4%) 时, 水溶态镉、锌含量分别比对照下降了57. 3% 和41. 4% ; 而可提取态镉、锌含量分别比对照下降42. 8% 和24. 7% 。海泡石对 Cd2+ 和 Zn2+ 的吸附过程符合 Langmuir 和 Freundich 等温吸附方程所描述的规律。随着体系 pH 升高, 海泡石对镉、锌的吸附能力增强, 在 pH 为 6, 海泡石对 Cd2+和 Zn2+ 的最大吸附量分别为 12. 3 mg/ g和6. 80 mg/g, 海泡石对2种金属离子的吸附能力为 Cd2+ > Zn2+ 。海泡石作为土壤重金属钝化剂,施入土壤后能有效地降低土壤中 Cd2+ 和Zn2+的活性;而pH是控制海泡石的钝化能力强弱的关键因素。  相似文献   

5.
为了探究外源茉莉酸甲酯(MeJA)对镉胁迫下多年生黑麦草(Loliumperenne)种子萌发及幼苗生理特性的影响,以多年生黑麦草品种"夜影"为试验材料,采用不同浓度的外源茉莉酸甲酯(MeJA)对镉胁迫下的黑麦草种子和幼苗进行处理,研究各处理对黑麦草发芽、干物质含量和叶片相对含水量、光合色素含量、活性氧代谢的影响.结果显示,在镉离子浓度为100μmol·L~(-1)时,多年生黑麦草的生长受到严重抑制;施加MeJA(浓度小于50μmol·L~(-1))可以促进多年生黑麦草种子发芽,增加多年生黑麦草幼苗叶绿素含量,促进叶片干物质的积累,增加叶片相对含水量,提高叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)的活性,降低游离脯氨酸(Pro)、丙二醛(MDA)、超氧阴离子自由基(O■)和过氧化氢(H_2O_2)含量.说明低浓度的MeJA可以有效缓解镉胁迫对多年生黑麦草幼苗的伤害;而高浓度的MeJA(大于75μmol·L~(-1))则表现出抑制作用,影响多年生黑麦草幼苗的代谢.外源MeJA可促进镉胁迫下多年生黑麦草的发芽和幼苗生长,其效应与MeJA浓度有关.  相似文献   

6.
采用水培方法,分别进行了镉胁迫、纳米炭黑与镉共同作用下黑麦草种子的萌发实验,并应用电感耦合等离子体质谱(ICP-MS)对黑麦草幼苗体内的镉含量进行测定。镉溶液浓度低于50 mg/L时对发芽率和发芽指数表现为促进作用,而镉溶液浓度高于50 mg/L则为抑制作用。对幼苗的根长、芽长和种子的活力指数表现为典型的Hormesis效应,在溶液镉浓度为5 mg/L时促进作用最为明显。添加定量纳米炭黑后,在较低镉浓度下(≤10 mg/L)可明显提高黑麦草种子的发芽力,其他种子萌发指标均高于未加入纳米炭黑的各项处理组,且趋势相同。ICP-MS测定结果显示,幼苗体内镉含量随镉浓度增加而增加,在溶液镉浓度小于100 mg/L时,添加纳米炭黑的处理组幼苗体内镉含量低于未添加纳米炭黑的处理组,这说明纳米炭黑对镉有一定的钝化作用,可阻碍幼苗对镉的吸收,降低体内镉含量。  相似文献   

7.
对湘西地区凤凰、永顺、龙山3个不同居群的箭叶淫羊藿叶片的超氧阴离子自由基(·O2)的产生速率和丙二醛(MDA)的含量进行测定.结果表明:永顺的箭叶淫羊藿的超氧阴离子自由基的产生速率最大,为(0.059 1±0.003 3) μmol·min-1·g-1,而龙山的箭叶淫羊藿的超氧阴离子自由基的产生速率最小,为(0.053 0±0.000 9) μmol·min-1·g-1;在3个不同居群的箭叶淫羊藿叶片的MDA的含量中,永顺的箭叶淫羊藿的含量最高,为(0.014 9±0.001 4) nmol·g-1,而龙山的箭叶淫羊藿的含量最低,为(0.007 5±0.001 4) nmol·g-1.  相似文献   

8.
以小麦种子根为材料,研究了镉、锌及其复合污染对其生长及生理指标的影响。结果表明:0.05ppm镉和0.5ppm,5ppm锌对小麦种子根的生长及生理活性有促进作用;当镉浓度超过0.5ppm,锌浓度超过5ppm时,对生长及生理活性具有抑制作用.镉和锌的关系不仅与二者的浓度有关,而且还决定于〔Zn~(2+)〕/〔Cd~(2+)〕.当(Zn~(2+)〕/〔Cd~(2+)〕>10时,同一水平Zn处理中,〔Cd~(2+)〕的增大会减小其伤害,同一水平Cd~(2+)处理中,〔Zn~(2+)〕的增大会增强其伤害;当〔Zn~(2+)〕/〔Cd~(2+)〕<10时,同一水平锌处理中,〔Cd~(2+)〕的增大将增强其伤害,同一水平镉处理中,〔Zn~(2+)〕的增大将减小其伤害。  相似文献   

9.
以强碱型阴离子交换树脂为吸附剂,以2.5 mol/L HCl为络合剂,去离子水为洗脱液,对铅、镉和锌进行了静态阴离子交换分离富集,提高了在0.03 mol/L HClO4底液中微分阳极溶出伏安法同时测定铅、镉和锌的灵敏度,减少了基体干扰.此法应用于食品中Pb,Cd和Zn的同时测定,回收率分别为91%~95%,93%~97%,89%~93%,相对标准偏差(n=9)分别为1.72%,1.38%,1.96%,获得了较好的结果.  相似文献   

10.
本文采用正交法,研究了硫酸浸取锌灰中锌、镉的最优条件组合及从浸取液中置换出海绵镉的条件.得到锌浸取率为100.1%,镉浸取率为99.8%.浸取的最优条件为:硫酸用量为理论量的130%,硫酸:水(体积比)为1:6,反应时间7小时.由浸取液中制得海绵镉中镉含量达70.97%.镉回收率为89.50%.  相似文献   

11.
重金属Cd、Zn污染对番茄果实品质的影响及其残留的研究   总被引:1,自引:0,他引:1  
通过温室盆栽试验,研究重金属Cd、Zn对番茄果实品质的影响及其在果实内的残留.结果表明:(1)Cd、Zn处理影响番茄果实品质.随着重金属处理浓度的增加(Cd:0.001 mmol/L~0.1 mmol/L、Zn:0.01 mmol/L~1.0mmol/L),番茄可溶性固形物、维生素C、可溶性糖的变化呈下降趋势,但是差异不显著.而有机酸含量上升,且处理间的差异显著,Zn在1.0 mmol/L时,有机酸含量与对照呈极显著差异.(2)Cd、Zn在番茄果实中的残留量随处理浓度的增加而增加,各Cd处理浓度与对照呈极显著差异.除Zn(0.01 mmol/L)处理外,其余Zn处理间差异显著.与国家蔬菜卫生标准相比,番茄果实中的Cd的含量严重超标,而Zn的含量没有超标.  相似文献   

12.
采用溶液培养法,研究不同浓度Cd单一及Cd Zn(0.50 mmol/L)复合污染对玉米叶绿素、脯氨酸、MDA含量及SOD、POD、CAT活性的影响.结果表明:Cd对叶片的影响比根部明显,随着Cd浓度的增加,叶片中叶绿素含量降低、脯氨酸含量增加,有效的活性氧自由基清除系统的平衡被打破,叶片中MDA含量增加;而根部的活性氧自由基清除系统的平衡未被打破,MDA含量保持在一个较低的水平.Zn能部分缓解Cd对玉米体内活性氧消除系统的毒害作用,降低MDA含量,但Zn和Cd共同对叶绿素的含量表现出抑制作用.  相似文献   

13.
一种新的多金属超富集植物--圆锥南芥(Arabis paniculata L.)   总被引:29,自引:0,他引:29  
野外调查和营养液培养试验表明,圆锥南芥(Arabis Paniculata L.)具有超量富集Pb/Zn/Cd的能力,是国内首次发现的Pb/Zn/Cd多金属超富集植物,它的出现填补了国内多金属超富集植物的空白,为重金属复合污染土壤的植物修复提供了新的种质资源.  相似文献   

14.
稀土元素铈对小麦幼苗镉伤害的防护效应   总被引:17,自引:1,他引:16  
通过长期暴露(7d,16d)试验和无矿质营养元素竞争短期暴露(24h)试验,研究镉对小麦幼苗生长影响及其生物可利用性,进而研究稀土元素铈对镉造成的小麦损伤的防护效应及生物可利用性的影响。结果表明,镉抑制小麦生长、降低根系及茎叶矿质元素的含量。铈对镉引起的生长抑制及营养障碍无明显的保护作用。但铈可明显降低小麦幼苗茎叶及根系中隔的生物富集量。  相似文献   

15.
干旱区污染绿洲土壤中Cd和Zn形态分布与生物有效性   总被引:3,自引:0,他引:3  
利用盆栽试验研究了干旱区污染绿洲土壤中Cd和Zn形态分布与生物有效性。结果表明:少量的Cd和Zn有促进油菜生长的作用,但高质量分数的Cd和Zn对油菜的生长有明显抑制作用;原状绿洲土壤中Cd和Zn形态以残渣态为主,随着绿洲土壤中Cd和Zn污染程度的加深,Cd和Zn各形态分布发生了显著变化,其中碳酸盐结合态Cd和Zn和铁锰氧化物结合态Cd和Zn质量分数大幅增加,并逐渐占据绝对优势,而残渣态Cd和Zn质量分数则几乎不变。相关分析表明土壤中的铁锰氧化物结合态Cd质量分数与油菜叶和根部的Cd质量分数呈极显著相关,表明土壤中的铁锰氧化物结合态Cd对油菜叶和根部累积Cd有最大贡献;铁锰氧化物结合态Zn和有机物结合态Zn分别与油菜根部和叶部的Zn质量分数呈极显著相关,表明土壤中铁锰氧化物结合态Zn和有机物结合态Zn分别对油菜根和叶部累积Zn贡献最大;油菜叶和根部Cd的富集系数均大于Zn的,表明油菜吸收Cd的能力大于Zn的;两种金属的富集系数叶部的均大于根部的,表明Cd和Zn的迁移性较强,且Cd在油菜中的迁移能力大于Zn的,其毒害作用也相应大于Zn的。两种金属主要累积在油菜可食用的叶部,因此对人体健康有潜在威胁。  相似文献   

16.
采用水培试验研究了不同浓度的重金属Cd(15、30 mg·L-1)污染下,不同浓度Zn、Cu(10、40 mg·L-1)对香根草生长、丙二醛(MDA)含量、根系活力、可溶性蛋白质、叶绿素含量以及香根草体内Cd积累的影响.结果表明,除了低浓度的Cu外,不同浓度的Zn、Cu、Cd对香根草体内生理生化指标都产生协同或加和作用,提高了香根草体内MDA含量,降低了根系活力、叶绿素a、b含量以及可溶性蛋白质含量.Zn、Cu对植物吸收Cd的复合作用较为复杂,其中对香根草地上部Cd的转移可能产生拮抗作用,对根部Cd的吸收可能产生协同或加和作用.  相似文献   

17.
东南景天(Sedum alfredii Hance)是一种典型的Zn、Cd、Pb的超积累植物,也是一种极佳植物修复材料.本文采用盆栽实验方法,研究东南景天组培苗在几种不同Zn、Cd污染土壤上的生长情况,及其对土壤Zn、Cd的去除效果.预期研究结果可为今后利用东南景天组培苗治理Zn、Cd污染提供一些理论依据.取得主要研究结果:1)东南景天组培苗完整地保留了扦插苗对于重金属的耐受性,并且对于高质量分数的Zn、Cd的环境适应性更强.在3#污染土壤(w(Zn)约2 000 mg·kg?1)中,组培苗地上部分生物量是对照组的2.3倍;在4#污染土壤(w(Cd)约1344 mg·kg?1)中,组培苗地上部分生物量相比于对照组的生物量增加了16.4%.2)东南景天组培苗对复合污染土壤中的Zn、Cd有很强的吸收积累能力.在1#和2#复合污染土壤中,组培苗对Zn的富集系数分别达到9.69和11.09,对Cd的富集系数分别达到12.67和85.36.3)复合污染土壤中的Zn、Cd会发生一定的交互作用,从而影响东南景天组培苗对Zn、Cd的吸收和富集.土壤中低质量分数的Cd会促进植物对Zn的吸收,但Zn却会抑制植物对Cd的吸收富集.此外,生长在复合污染土壤中的东南景天组培苗体内Zn、Cd重金属的分布也会受到影响.   相似文献   

18.
为研究Zn2+、Cu2+、Cd2+金属离子诱导玉米产生金属硫蛋白,采用实验室溶液培养的方式,通过不同浓度Zn2+、Cu2+、Cd2+(0.05、0.5、1.0、2.0、4.0、8.0、16.0 mmol/L)胁迫下,采用电感耦合等离子体(ICP-MS)测定玉米叶金属硫蛋白(MT)的诱导合成量。随着金属离子浓度的升高,MT的含量呈现先升高后下降的趋势。锌、铜、镉胁迫浓度分别为8.0、0.05和0.5 mmol/L时,玉米叶片中MT含量最高,当铜、镉离子浓度大于2 mmol/L浓度时,玉米出现了一定程度的死亡。研究结果表明玉米可作为锌、铜、镉污染的标志物。  相似文献   

19.
Cd,Zn复合污染对小麦叶绿素含量的影响   总被引:3,自引:0,他引:3  
主要研究了重金属Cd,Zn单一及复合污染对小麦叶绿素含量的影响。叶绿素随处理浓度的上升而呈递减趋势。在各Cd处理梯度中加入Zn后,随Zn浓度的增大,上述各指标与单一Cd处理差异显性增强,表明Zn增强了Cd的毒害作用,显示出协同趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号