首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T-cell receptors and T-cell subsets were analysed in T-cell receptor transgenic mice expressing alpha and beta T-cell receptor genes isolated from a male-specific, H-2Db-restricted CD4-8+ T-cell clone. The results indicate that the specific interaction of the T-cell receptor on immature thymocytes with thymic major histocompatibility complex antigens determines the differentiation of CD4+8+ thymocytes into either CD4+8- or CD4-8+ mature T cells.  相似文献   

2.
L Haughn  S Gratton  L Caron  R P Sékaly  A Veillette  M Julius 《Nature》1992,358(6384):328-331
The membrane glycoprotein CD4 enhances antigen-mediated activation of T cells restricted by class II molecules of the major histocompatibility complex (MHC). This positive function has been attributed to the protein tyrosine kinase p56lck (ref. 4), which is noncovalently associated with the cytoplasmic portion of CD4, and is activated on CD4 aggregation. Antigen presentation by MHC class II molecules coaggregates CD4 and the T-cell antigen receptor (TCR alpha beta-CD3). Thus, the mutual specificity of CD4 and TCR alpha beta for the MHC-antigen complex results in the juxtaposition of p56lck and TCR alpha beta-CD3. In contrast, anti-CD4 antibodies can abrogate antigen-induced, as well as anti-TCR-induced T-cell activation, indicating that CD4 might also transduce negative signals. The molecular basis for this opposing function remains unclear. Here we show that the CD4-p56lck complex prohibits the induction of activation signals through the TCR-CD3 complex when not specifically included in the signalling process. This negative effect does not require anti-CD4 treatment, indicating that the induction of distinct negative signals is probably not involved. Rather, the results demonstrate that the CD4-p56lck complex provides prerequisite signals for antigen-receptor-induced T-cell growth and thus characterize a molecular mechanism for functional constraints imposed on T-cell activation by the MHC.  相似文献   

3.
F Hochstenbach  M B Brenner 《Nature》1989,340(6234):562-565
Specific monoclonal antibodies have made possible the identification of two T-cell antigen receptor (TCR) heterodimers, alpha beta TCR and gamma delta TCR. Formation of these receptors is largely separated by the preferential pairing of alpha-TCR with beta and gamma-TCR with delta, the sequential rearrangement and expression of the TCR loci during thymic development and the deletion of the delta-loci either prior to or concomitant with alpha-rearrangement in alpha beta TCR cells. Here we show that delta-TCR can substitute for alpha in pairing with beta to form a beta delta heterodimer. This receptor is expressed on the cell surface of the T-leukaemia cell line DND41 as analysed with beta- and delta-specific monoclonal antibodies. We suggest that a variety of factors including, for example, the deletion of the delta-TCR loci, can now be understood as exclusion mechanisms operating to prevent not only the formation of gamma delta receptors, but also of beta delta T-cell receptors, thereby promoting the numerically dominant alpha beta TCR lineage. Nevertheless, some developing T-cells that do not rearrange the alpha-loci may express the beta delta TCR as described here.  相似文献   

4.
Transfer of specificity by murine alpha and beta T-cell receptor genes   总被引:51,自引:0,他引:51  
T-cell receptor alpha- and beta-chain genes were isolated from a class I major histocompatibility complex-restricted cytotoxic T-cell clone and transferred by protoplast fusion into another cytolytic T-cell clone of different specificity. Expression of the transfected alpha and beta genes endowed the recipient cell with the specificity of the donor cell.  相似文献   

5.
T-cell differentiation in the thymus is thought to involve a progression from the CD4-CD8- phenotype through CD4+CD8+ intermediates to mature CD4+ or CD8+ cells. There is evidence that during this process T cells bearing receptors potentially reactive to 'self' are deleted by a process termed 'negative selection' One example of this process occurs in mice carrying polymorphic Mls antigens, against which a detectable proportion of T cells are autoreactive. These mice show clonal deletion of thymic and peripheral T-cell subsets that express the autoreactive V beta 3 segment of the T-cell antigen receptor, but at most a two-fold depletion of thymic cells at the CD4+CD8+ stage. By contrast, transgenic mice bearing both alpha and beta chain genes encoding autoreactive receptors recognizing other ligands, show severe depletion of CD4+CD8+ thymocytes as well, suggesting that negative selection occurs much earlier. We report here the Mls 2a/3a mediated elimination of T cells expressing a transgene encoded V beta 3-segment, in T-cell receptor alpha/beta and beta-transgenic mice. Severe depletion of CD4+CD8+ thymocytes is seen only in the alpha/beta chain transgenic mice, whereas both strains delete mature V beta 3 bearing CD4+ and CD8+ T cells efficiently. We conclude that severe CD4+CD8+ thymocyte deletion in alpha/beta transgenic mice results from the premature expression of both receptor chains, and does not reflect a difference in the timing or mechanism of negative selection for Mls antigens as against the allo- and MHC class 1-restricted antigens used in the other studies.  相似文献   

6.
Evidence for the T3-associated 90K heterodimer as the T-cell antigen receptor   总被引:68,自引:0,他引:68  
Several surface molecules appear to be involved in antigen recognition by human T lymphocytes including the monomorphic 20/25K T3 structure present on all mature T lymphocytes and the subset-specific associative recognition elements, T4 and T8 (refs 1-8). More recently, Ti1, a clonally unique antigen recognition structure comprised of a 49,000 molecular weight (49K) alpha-chain and a 43K beta-chain, linked to T3 was identified on a major histocompatibility complex (MHC) class I specific T8+ T-cell clone, CT8III (ref. 9). To determine whether analogous receptor molecules could be found on other T-cell clones of differing specificity, we produced monoclonal antibodies against a clonal structure (Ti2) on an MHC class II specific T4+ lymphocyte, CT4II, derived from the same donor as CT8III. The Ti2 structure on CT4II is shown here to be a disulphide-linked heterodimer like Ti1 on CT8III and is composed of subunits of similar molecular weight. Monoclonal antibodies against Ti2 or Ti1 block antigen specific functions of the respective clone without showing any cross-reactivity. These findings suggest that each T lymphocyte, regardless of subset derivation or specificity, uses an analogous Ti heterodimer for antigen specific function. The latter is linked to T3 and expressed on the cell surface at an identical density (30,000-40,000 sites per cell).  相似文献   

7.
A binding site for the T-cell co-receptor CD8 on the alpha 3 domain of HLA-A2   总被引:23,自引:0,他引:23  
Adhesion measurements between CD8 and 48 point mutants of HLA-A2.1 show that the CD8 alpha-chain binds to the alpha 3 domain of HLA-A2.1. Three clusters of alpha 3 residues contribute to the binding, with an exposed, negatively charged loop (residues 223-229) playing a dominant role. CD8 binding correlates with cytotoxic T-cell recognition and sensitivity to inhibition by anti-CD8 antibodies. Impaired alloreactive T-cell recognition of an HLA-A2.1 mutant with reduced affinity for CD8 is not restored by functional CD8 binding sites on an antigenically irrelevant class I molecule. Therefore, complexes of CD8 and the T-cell receptor bound to the same class I major histocompatibility complex molecule seem to be necessary for T-cell activation.  相似文献   

8.
Recent studies have demonstrated that CD3 is expressed on a subset of thymocytes with a CD4-CD8- (double negative) phenotype. At least some of these cells bear the CD3-associated gamma delta T-cell receptor (TCR gamma delta). Here we describe a second subset of double negative thymocytes which expresses CD3-associated alpha beta receptors (TCR alpha beta). Surprisingly, these cells express predominantly the products of a single V beta gene family (V beta 8). These CD4-CD8-, TCR alpha beta+ cells appear relatively late in ontogeny (between birth and day 5 of life) and thus are unlikely to be the precursors to the TCR alpha beta-bearing cells (CD4+CD8- and CD4-CD8+) already present at birth. They can be selectively expanded in vitro by stimulation with a monoclonal antibody to V beta 8 (F23.1) in the presence of interleukin I (IL-1). We propose that this cell type is a unique T-cell population distinguishable from typical TCR alpha beta+ T cells by its CD4-CD8- phenotype and a restricted TCR V beta repertoire. Analysis of the unique phenotype of these cells suggests that they may represent the normal counterpart of the defective CD4-CD8- T cells found in the lpr autoimmune mouse.  相似文献   

9.
M K Newell  L J Haughn  C R Maroun  M H Julius 《Nature》1990,347(6290):286-289
Effector T cells are restricted to recognizing antigens associated with major histocompatibility complex (MHC) molecules. Specific recognition is mediated by the alpha beta heterodimer of the T-cell receptor (TCR)/CD3 complex, although other membrane components are involved in T-cell antigen recognition and functions. There has been much controversy in this regard over the part played by the CD4 glycoprotein. It is known that expression of CD4 correlates closely with the cell's ability to recognize antigens bound to class II MHC molecules and that CD4 can bind to class II molecules. Also monoclonal antibodies to CD4 can modify signals generated through the TCR/CD3 complex. It has therefore been proposed that CD4 binds to class II molecules, coaggregates with the TCR-CD3 complex and aids the activation of T cells. But given that TCR can itself impart restriction on the cell, it remains unclear whether the contribution of CD4-derived signals to those generated through the TCR alpha beta-CD3 complex is central to this activation. Here we report that when preceded by ligation of CD4, signalling through TCR alpha beta results in T cell unresponsiveness due to the induction of activation dependent cell death by apoptosis. These results imply that CD4 is critically involved in determining the outcome of signals generated through TCR, and could explain why the induction of effector T cells needs to be MHC-restricted.  相似文献   

10.
Analysis of mice carrying mutant T-cell antigen receptor (TCR) genes indicates that TCR-beta gene rearrangement or expression is critical for the differentiation of CD4-CD8- thymocytes to CD4+CD8+ thymocytes, as well as for the expansion of the pool of CD4+CD8+ cells. TCR-alpha is irrelevant in these developmental processes. The development of gamma delta T cells does not depend on either TCR-alpha or TCR-beta.  相似文献   

11.
B Scott  H Blüthmann  H S Teh  H von Boehmer 《Nature》1989,338(6216):591-593
THE T-cell repertoire within an individual is biased to recognize antigen in the context of self major histocompatibility complex (MHC) antigens. This is thought to depend on a process of positive selection during development. Support for this notion has recently been obtained in experiments using transgenic mice bearing genes for T-cell receptors (TCR) of defined specificity: T cells expressing the introduced genes form the main part of the mature T-cell population only in mice that express the appropriate MHC product. We have now extended these observations using TCR transgenic mice homozygous for the severe combined immunodeficiency (SCID) mutation which are defective in the rearrangement of both TCR and immunoglobulin genes. In this case mature thymocytes develop only in transgenic mice that express the MHC product which restricts the specificity of the transgenic TCR. This shows that the interaction of the alpha beta TCR with thymic MHC antigen is essential for the development of mature T cells. Furthermore, the peripheral lymph nodes of such mice are underdeveloped, suggesting that the peripheral expansion of mature T cells may require interactions with other lymphocytes expressing a range of receptors.  相似文献   

12.
The surface expression of HIV-1 coreceptors (CXCR4 and CCR5) on monocytes can be regulated by the ligand of CD14,and the susceptibility of the cells to HIV-1 is then changed.Our previous study found that monoclonal antibody against CD14 could dramatically inhibit CXCR4-mediated chemotaxis and cell-cell fusion.Based on these studies,we explored potential relationship between CD14 and CXCR4 on monocytic cell line U937.Flow cytometry analysis showed that anti-CXCR4 monoclonal antibody (mAb) 12G5 strongly inhibited binding of the FITC-conjugated anti-CD14 monoclonal antibodies (TUK4 and UCHM1) to U937,while another CX- CR4-specific mAb B-R24 did not show any effect on this binding.On the other hand,two anti-CD14 monoclonal antibodies (TUK4 and UCH-M1) obviously inhibited the binding of the PE-conjugated anti-CXCR4 mAb 12G5 to U937 but did not inhibit the binding of mAb 12G5 to CXCR4-transfected 3T3 cells (3T3.T4.CXCR4),which indicates that the blocking of mAb 12G5 binding to CXCR4 by CD14- specific mAbs is not involved in the possibility that CD14-specific mAbs directly bind to CXCR4.These results suggested existence of a close association between CD14 and CXCR4 on monocytic cell line U937.  相似文献   

13.
The surface expression of HIV-1 coreceptors (CXCR4 and CCR5) on monocytes can be regulated by the ligand of CD14, and the susceptibility of the cells to HIV-1 is then changed. Our previous study found that monoclonal antibody against CD14 could dramatically inhibit CXCR4-mediated chemotaxis and cell-cell fusion. Based on these studies, we explored potential relationship between CD14 and CXCR4 on monocytic cell line U937. Flow cytometry analysis showed that anti-CXCR4 monoclonal antibody (mAb) 12G5 strongly inhibited binding of the FITC-conjugated anti-CD14 monoclonal antibodies (TUK4 and UCHM1) to U937, while another CXCR4-specific mAb B-R24 did not show any effect on this binding. On the other hand, two anti-CD14 monoclonal antibodies (TUK4 and UCH-M1) obviously inhibited the binding of the PE-conjugated anti-CXCR4 mAb 12G5 to U937 but did not inhibit the binding of mAb 12G5 to CXCR4-transfected 3T3 cells (3T3.T4.CXCR4), which indicates that the blocking of mAb 12G5 binding to CXCR4 by CD14-specific mAbs is not involved in the possibility that CD14-specific mAbs directly bind to CXCR4. These results suggested existence of a close association between CD14 and CXCR4 on monocytic cell line U937.  相似文献   

14.
R Abe  M S Vacchio  B Fox  R J Hodes 《Nature》1988,335(6193):827-830
The precursor frequency of T cells specific for any given foreign antigen is, in general, extremely low. Prominent exceptions to this rule are the T cells that are specific for foreign major histocompatibility complex (MHC) products or for products of the minor lymphocyte stimulatory (Mls) genes in the mouse which are present at high frequencies. Here, we report a striking overlap or cross-reactivity between the T cells specific for the protein antigen pigeon cytochrome c in association with Ek alpha Ek beta and the set of T cells specific for Mlsc products. In addition, we demonstrate that the basis for this overlap is the predominant expression of one T-cell receptor (TCR) V beta gene, V beta 3, by T cells that recognize Mlsc products. These results indicate the importance of specific TCR alpha beta dimers in the recognition of Mlsc products and that positive or negative selection of T cells specific for Mls self-determinants may selectively alter the repertoire of T cells available for MHC-restricted recognition of foreign antigens.  相似文献   

15.
The intrathymic differentiation process by which precursor cells derived from the bone marrow develop into immuno-competent T lymphocytes is poorly understood. Most thymocytes express both CD4 and CD8 accessory molecules, yet little is known about either the function of these molecules or the responsiveness of the CD4+8+ double positive thymocytes that bear them. Here, we address the possibility that CD4 engagement influences T-cell receptor (TCR) expression on developing thymocytes. We engaged CD4 molecules on murine thymocytes by in vivo injection of an anti-CD4 monoclonal antibody, which reduced the surface expression of CD4 on CD4+ thymocytes. More importantly, CD4 engagement also affected TCR expression on CD4+ thymocytes, but the effect on CD4+8+ double positive and CD4+8- single positive thymocytes was very different. CD4+8+ thymocytes responded to CD4 engagement by dramatically increasing surface expression of TCR, whereas CD4+8- thymocytes decreased surface expression of TCR. These results demonstrate that the effect of CD4 engagement on TCR expression is dependent upon the developmental state of the responding thymocyte, and, most interestingly, results in increased TCR expression by double positive thymocytes.  相似文献   

16.
Yasutomo K  Doyle C  Miele L  Fuchs C  Germain RN 《Nature》2000,404(6777):506-510
Signals elicited by binding of the T-cell antigen receptor and the CD4/CD8 co-receptor to major histocompatibility complex (MHC) molecules control the generation of CD4+ (helper) or CD8+ (cytotoxic) T cells from thymic precursors that initially express both co-receptor proteins. These precursors have unique, clonally distributed T-cell receptors with unpredictable specificity for the self-MHC molecules involved in this differentiation process. However, the mature T cells that emerge express only the CD4 (MHC class II-binding) or CD8 (MHC class I-binding) co-receptor that complements the MHC class-specificity of the T-cell receptor. How this matching of co-receptor-defined lineage and T-cell-receptor specificity is achieved remains unknown, as does whether signalling by the T-cell receptors, co-receptors and/or general cell-fate regulators such as Notch-1 contributes to initial lineage choice, to subsequent differentiation processes or to both. Here we show that the CD4 versus CD8 lineage fate of immature thymocytes is controlled by the co-receptor-influenced duration of initial T-cell receptor-dependent signalling. Notch-1 does not appear to be essential for this fate determination, but it is selectively required for CD8+ T-cell maturation after commitment directed by T-cell receptors. This indicates that the signals constraining CD4 versus CD8 lineage decisions are distinct from those that support subsequent differentiation events such as silencing of co-receptor loci.  相似文献   

17.
Expression and function of CD4 in a murine T-cell hybridoma   总被引:33,自引:0,他引:33  
The CD4 (T4) antigen was originally described as a phenotypic marker specific for helper T cells, and has recently been shown to be the receptor for the human immunodeficiency virus (HIV). Functional studies using monoclonal antibodies directed at CD4 and major histocompatibility complex (MHC) class II molecules led to the suggestion that CD4 binds to the MHC class II molecules expressed on stimulator cells, enhancing T-cell responsiveness by increasing the avidity of T cell-stimulator cell interaction and/or by transmitting a positive intracellular signal. But recent evidence that antibodies to CD4 inhibit T-cell responsiveness in the absence of any putative ligand for CD4 has been interpreted as suggesting that antibody-mediated inhibition may involve the transmission of a negative signal via the CD4 molecule instead. We have infected a murine T-cell hybridoma that produces interleukin 2 (IL-2) in response to human class II HLA-DR antigens with a retroviral vector containing CD4 cDNA. The resulting CD4-expressing hybridoma cell lines produce 6- to 20-fold more IL-2 in response to HLA-DR antigens than control cell lines. Furthermore, when antigen levels are suboptimal, the response of the cell lines is entirely CD4-dependent. The data presented here clearly demonstrate that CD4 can enhance T-cell responsiveness and may be crucial in the response to suboptimal levels of antigen.  相似文献   

18.
Delgado P  Fernández E  Dave V  Kappes D  Alarcón B 《Nature》2000,406(6794):426-430
Thymocytes from mice lacking the CD3delta chain of the T-cell receptor (TCR), unlike those of other CD3-deficient mice, progress from a CD4- CD8- double-negative to a CD4+ CD8+ double-positive stage. However, CD3delta-/- double-positive cells fail to undergo positive selection, by which double-positive cells differentiate into more mature thymocytes. Positive selection is also impaired in mice expressing inactive components of the Ras/mitogen activated protein (MAP) kinase signalling pathway. Here we show that CD3delta-/- thymocytes are defective in the induction of extracellular signal-regulated protein kinase (ERK) MAP kinases upon TCR engagement, whereas activation of other MAP kinases is unaffected. The requirement for CD3delta maps to its extracellular or transmembrane domains, or both, as expression of a tail-less CD3delta rescues both ERK activation and positive selection in CD3delta-/- mice. Furthermore, the defect correlates with severely impaired tyrosine phosphorylation of the linker protein LAT, and of the CD3zeta chain that is localized to membrane lipid rafts upon TCR engagement. Our data indicate that the blockade of positive selection of CD3delta-/- thymocytes may derive from defective tyrosine phosphorylation of CD3zeta in lipid rafts, resulting in impaired activation of the LAT/Ras/ERK pathway.  相似文献   

19.
Blockage of alpha beta T-cell development by TCR gamma delta transgenes   总被引:2,自引:0,他引:2  
  相似文献   

20.
A Mallabiabarrena  M Fresno  B Alarcón 《Nature》1992,357(6379):593-596
Isolated polypeptide chains of the T-cell antigen receptor complex are degraded or retained in the endoplasmic reticulum (ER). Assembly of the multisubunit complex allows the individual chains to escape retention in the ER and to be expressed on the cell surface. We engineered a series of deletions in the CD3 epsilon subunit of the human T-cell receptor in order to find the sequences responsible for its retention in the ER. Deletion of amino acids 171 to 180 in the cytosolic tail resulted in the cell-surface expression of the isolated chain. This sequence also promotes retention when it is appended to CD4, a plasma membrane protein. Mutagenesis of the 10-amino-acid CD3 epsilon sequence established that the tyrosine and serine residues are important for ER retention. This and other ER retention signals must be hidden when a complete T-cell receptor complex is assembled in order to allow its expression on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号