首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
P D Moore 《Nature》2001,414(6862):406-407
  相似文献   

2.
3.
B and C floral organ identity functions require SEPALLATA MADS-box genes   总被引:64,自引:0,他引:64  
Pelaz S  Ditta GS  Baumann E  Wisman E  Yanofsky MF 《Nature》2000,405(6783):200-203
Abnormal flowers have been recognized for thousands of years, but only in the past decade have the mysteries of flower development begun to unfold. Among these mysteries is the differentiation of four distinct organ types (sepals, petals, stamens and carpels), each of which may be a modified leaf. A landmark accomplishment in plant developmental biology is the ABC model of flower organ identity. This simple model provides a conceptual framework for explaining how the individual and combined activities of the ABC genes produce the four organ types of the typical eudicot flower. Here we show that the activities of the B and C organ-identity genes require the activities of three closely related and functionally redundant MADS-box genes, SEPALLATA1/2/3 (SEP1/2/3). Triple mutant Arabidopsis plants lacking the activity of all three SEP genes produce flowers in which all organs develop as sepals. Thus SEP1/2/3 are a class of organ-identity genes that is required for development of petals, stamens and carpels.  相似文献   

4.
Carpels are essential for sexual plant reproduction because they house the ovules and subsequently develop into fruits that protect, nourish and ultimately disperse the seeds. The AGAMOUS (AG) gene is necessary for plant sexual reproduction because stamens and carpels are absent from ag mutant flowers. However, the fact that sepals are converted into carpelloid organs in certain mutant backgrounds even in the absence of AG activity indicates that an AG-independent carpel-development pathway exists. AG is a member of a monophyletic clade of MADS-box genes that includes SHATTERPROOF1 (SHP1), SHP2 and SEEDSTICK (STK), indicating that these four genes might share partly redundant activities. Here we show that the SHP genes are responsible for AG-independent carpel development. We also show that the STK gene is required for normal development of the funiculus, an umbilical-cord-like structure that connects the developing seed to the fruit, and for dispersal of the seeds when the fruit matures. We further show that all four members of the AG clade are required for specifying the identity of ovules, the landmark invention during the course of vascular plant evolution that enabled seed plants to become the most successful group of land plants.  相似文献   

5.
MADS-box转录因子,作为一个大的基因家族,在植物生长发育过程中起重要作用,尤其是作为开花植物花器官形成的主要调控者.该基因家族在揭示进化方面也有着重大意义.为了探究MADS-box基因的进化,需要更多的非开花植物中MADS-box基因的信息.选取水蕨(Ceratopteris thalictroides)作为材料,用RACE方法对其MADS-box基因进行克隆与分析.在水蕨中克隆得到两条MADS-box基因,分别命名为CtMADS1和CtMADS2.分析显示:CtMADS1属于MIKC*分支,而CtMADS2属于MIKCc分支,水蕨的这2条MADS-box基因与开花植物的MADS-box基因有着很近的亲缘关系,现在维管植物最近的共同祖先中至少存在2条不同的花同源异形基因,即MADS-box基因.  相似文献   

6.
滨海盐沼湿地中,种子扩散模式主要由潮汐作用决定,在潮汐沿高程梯度的运动中形成了种子流。滨海围垦活动可以直接影响到盐沼湿地的潮汐作用,进而造成盐沼湿地中种子扩散模式的变化。本研究对不同高程盐沼湿地的种子流通量进行调查,阐明了潮流干扰下盐沼湿地中植物种子扩散模式的响应机制。本研究发现在潮流驱动下,低位盐沼和中位盐沼的种子将会向海陆两端迁移,低位盐沼上部是重要的种子源区,中位盐沼下部成为了种子汇区。而高位盐沼的围垦活动将会改变盐地碱蓬种子扩散模式。中位盐沼下部的种子扩散模式受到的影响最为严重。围垦活动占据或破坏高位盐沼之后,中位盐沼下部将由种子的汇区变为源区,大量的种子净流出将给该区域盐地碱蓬定植造成潜在威胁。   相似文献   

7.
Arabidopsis thaliana contains two genes for TFIID   总被引:29,自引:0,他引:29  
A Gasch  A Hoffmann  M Horikoshi  R G Roeder  N H Chua 《Nature》1990,346(6282):390-394
  相似文献   

8.
The plant hormone auxin influences a variety of developmental and physiological processes. But the mechanism of its action is quite unclear. In order to identify and analyze the expression of auxin responsive genes, a cDNA array approach was used to screen for genes with altered expression from Arabidopsis suspension culture after IAA treatment and was identified 50 differentially expressed genes from 13824 cDNA clones. These genes were related to signal transduction, stress responses, senescence, photosynthesis, protein biosynthesis and transportation. The results provide the molecular evidence that auxin influences a variety of physiological processes and pave a way for further investigation of the mechanism of auxin action. Furthermore,we found that the expression of a ClpC (regulation subunit of Clp protease) was repressed by exogenous auxin, but increased in dark-induced senescing leaves. This suggests that ClpC may be a senescence-associated gene and can be regulated by auxin.  相似文献   

9.
Expression pattern of GASA,downstream genes of DELLA,in Arabidopsis   总被引:3,自引:0,他引:3  
Separation and functional research of related components involved in gibberellins (GAs) signaling are important to clarify the mechanism of GA functioning. Research on the downstream components of DELLA, the key factor of the GA signaling pathway, is limited at present. GASA (GA-Stimulated in Arabidopsis) family contains 15 genes usually regulated by GA in Arabidopsis thaliana. All GASA proteins have a cleavable signal peptide in N terminus and a conserved GASA domain including 12 cysteines in C terminus. RT-PCR analysis revealed that the expression of GASA4 and GASA6 were down-regulated, but GASA 1 and GASA9 were up-regulated in the DELLA mutants, gai-t6 and rga-24, as well as the double mutant, consisting with the results that GASA4 and GASA6 were induced, but GASA1 and GASA9 were inhibited by exogenous GA3. In addition, the expression patterns of other GASA genes were regulated by GA and ABA, separately or cooperatively. Most of GASA genes were expressed in roots, stems, leaves, flowers and developing siliques. GUS gene driven by the promoters of GASA6, GASA7, GASA8, GASA9, GASAIO, GASA11 and GASA12were used as reporters and it was found that all GASA genes expressed in the growing and differentiating organs and abscission zones, suggesting the role of these genes in cell growth and differentiation. This study provided an important basis for functional study of the GASA gene family in the GA and ABA signaling pathway.  相似文献   

10.
为研究苯丙氨酸解氨酶(PAL)作为苯丙烷类代谢途径的关键酶,在植物响应环境胁迫过程中的重要作用,本研究利用HMMER、Pfam与SMART等工具,从拟南芥全基因组中筛选获得 9 个PAL成员,分析其编码酶蛋白的理化性质、二级结构与保守基序等信息.同时,结合转录组与定量PCR分析PAL成员在干旱与盐胁迫条件下的表达模式.结果表明,拟南芥PAL成员的二级结构主要由α-螺旋和无规则卷曲组成;亮氨酸和丙氨酸为含量较高的氨基酸残基;拟南芥PAL成员含有 20 种不同的保守基序,其中motif6含有ASG活性位点,为所有PAL成员所共有;较多PAL成员具有光响应、激素响应、胁迫响应和生长发育相关的顺式调控元件.转录组学与定量PCR分析发现,AT3G53260.1、AT3G53260.2与AT3G47660.1的mRNA表达水平在干旱与盐胁迫后发生显著变化,推测这 3 条基因可能参与拟南芥对干旱及盐胁迫的响应过程,表明PAL基因在调控植物生长发育与非生物胁迫响应过程中发挥重要作用.  相似文献   

11.
为了研究不同传播方式物种种子雨的基本特征,以浙江天童常绿阔叶林20 hm2动态监测样地的种子雨为研究对象,分析了种子雨的密度、物种组成以及种子限制的强度.结果表明:(1)种子雨收集器共收集到种子136 38粒,隶属于28科66种,种子雨密度为146粒/m2;(2)样地内有56%的物种未收集到种子,因此种子雨与可繁殖个体物种组成的相似性较低且受不同传播方式影响,风力传播的相似性系数极值(Rmax)最大且距种子收集器距离(d)最远(风力传播:Rmax=0.226,d=20 m;重力传播:Rmax=0.077,d=9 m;鸟类传播:Rmax=0.094,d=13 m),证明通过风力传播的种子在远距离传播上更有优势;(3)样地内存在一定程度的种子限制,有43个物种的种子只在很少的(10)收集器中出现.对于较为优势的物种而言(IV≥1),传播方式可能是影响种子限制的主要因素.另外,群落中通过风力传播的物种种子限制很可能仅仅是由于可繁殖个体的缺少造成的,而通过重力和鸟类传播的物种存在很高的种子限制可能是因为种子的低产量以及种子扩散能力的不足.  相似文献   

12.
13.
本研究主要在实验室前期筛选出的两个编码同源未知基因AB(AB025622)和AC(AC023628)所构建的拟南芥过量表达和抑制表达转基因植株基础上对转AB基因拟南芥的生理性状进行初步分析以及在转录水平上分AB、AC和ABI1、ABI2在ABA影响下其表达情况.研究证明AB基因的过量表达导致植株对ABA不敏感,失水率增加,而AB的抑制表达导致植株对ABA敏感,降低了植株的失水率.初步证实AB参与ABA信号传导.此外,通过RNA的半定量分析可知在转录水平上AB、AC和ABI1、ABI2的表达量都受ABA诱导变化,证明ABA对野生型拟南芥植株生理性状的影响与控制AB、AC和ABI1、ABI2内源表达量有密切联系.  相似文献   

14.
本研究旨在探讨柠檬醛在植物抗旱方面的潜在应用价值.以不同浓度的柠檬醛处理拟南芥,我们发现200μmol/L柠檬醛处理的拟南芥在随后干旱胁迫下的存活率高达80%,而未经柠檬醛处理的对照组只有40%左右.转录组测序(RNA-seq)分析发现经200μmol/L柠檬醛处理后有230个差异表达基因(differentially expressed genes, DEGs),DEGs在GO功能注释和KEGG通路中分别显著富集为应激反应和内质网中的蛋白质加工,且上调表达的DEGs许多都与热激蛋白家族相关.从中挑选4个(AT1G07400,AT2G26150,AT4G25200,AT4G12400)进行RT-qPCR验证,发现其反映的表达水平和RNA-seq数据一致.本研究表明200μmol/L柠檬醛处理可以诱导拟南芥产生抗旱性,并可能通过热激蛋白使干旱胁迫后部分解折叠的功能蛋白恢复生理活性状态,从而使拟南芥显示出对干旱更强的耐受性和抵抗力.  相似文献   

15.
以甜荞、苦荞、金荞为研究材料,利用生物信息学在荞麦转录组数据中鉴定种子蛋白相关基因,结果一共鉴定21个种子蛋白相关基因,通过PCR技术可以成功扩增出20个基因,其中包含1个13S球蛋白基因(Unigene.10815),1个11S球蛋白基因(Unigene.34090)和1个谷蛋白基因(Unigene.39749)。利用荧光定量PCR技术鉴定这些基因在甜荞、苦荞和金荞种子发育不同时期的表达情况。结果表明,不同基因在同一材料不同时期的表达情况不同,同一基因在同一时期不同材料中的表达情况也不同。  相似文献   

16.
为了解雌雄异株植物间MADS-box基因家族的密码子使用偏好性特点,以拟南芥为参照,利用Gen-Bank Feature Extractor,Codonw和CUSP等软件对已发表的雌雄异株植物MADS-box基因序列的密码子偏好性进行分析,发现拟南芥及雌雄异株植物中均偏好使用密码子第3位点为U和A的密码子.再运用SPSS11.5对拟南芥和雌雄异株植物的MADS-box基因密码子偏好性进行聚类分析,发现雌雄异株植物与拟南芥在MADS-box基因的密码子选择偏好方面的差异不显著.从而得出雌雄异株植物对MADS-box基因密码子偏好性不具有显著影响.  相似文献   

17.
拟南芥中未知基因At1g14260的表达受到多种非生物胁迫的诱导, 特别是在NaCl的诱导下, At1g14260的表达量明显增加. 对T DNA插入突变体at1g14260(salk 118406)的分析表明, 敲除了基因At1g14260的拟南芥相比野生型对盐胁迫更加敏感. 此外, 构建了融合表达载体PBi221 At1g14260 GFP并且成功转入拟南芥原生质体中, 在荧光显微镜下观察到融合蛋白定位于原生质体细胞核中. 因此, At1g14260可能参与了拟南芥中盐胁迫的过程.  相似文献   

18.
花粉在发育过程中,其壁中的不同成分具有自发荧光或诱发荧光的特性,荧光显微术利用此特性来鉴别花粉壁中的化学成分.拟南芥野生型花序的树脂半薄连续切片用苯胺蓝水溶液染色后,在紫外光激发下,胼胝质发出黄绿色荧光,孢粉素发出黄色或黄棕色荧光,纤维素发出蓝色荧光.利用荧光的方法快速简便,分辨率高,适用于大规模筛选花粉壁发育相关基因时对不同基因的功能进行快速鉴别和分类.用该方法鉴别出了几个与胼胝质合成、胼胝质降解、孢粉素沉积模式以及花粉内壁纤维素合成相关的遗传位点.  相似文献   

19.
Flowering is often triggered by exposing plants to appropriate day lengths. This response requires an endogenous timer called the circadian clock to measure the duration of the day or night. This timer also controls daily rhythms in gene expression and behavioural patterns such as leaf movements. Several Arabidopsis mutations affect both circadian processes and flowering time; but how the effect of these mutations on the circadian clock is related to their influence on flowering remains unknown. Here we show that expression of CONSTANS (CO), a gene that accelerates flowering in response to long days, is modulated by the circadian clock and day length. Expression of a CO target gene, called FLOWERING LOCUS T (FT), is restricted to a similar time of day as expression of CO. Three mutations that affect circadian rhythms and flowering time alter CO and FT expression in ways that are consistent with their effects on flowering. In addition, the late flowering phenotype of such mutants is corrected by overexpressing CO. Thus, CO acts between the circadian clock and the control of flowering, suggesting mechanisms by which day length regulates flowering time.  相似文献   

20.
根据MADS-box基因的保守区结构,设计简并性引物,利用RT-PCR从水稻(Oryza sativa L.)中克隆到一个新的水稻MADS-box基因cDNA睛段,将它命名为FDRMADS5.该基因核苷酸序列851bp,编码160个氨基酸,有典型的植物MADS-box基因的结构,FDRMADS5的Southern分析,表明它为单拷贝基因,用Northern检测了FDRMADS5的表达情况,发现该基因除了在花中有表达外,在水稻的根尖和幼苗端中也有微量的表达,这一结果表明,水稻的MADS-box基因功能可能并不局限于控制花的发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号