首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
水解木质素制备药用活性炭的研究   总被引:5,自引:0,他引:5  
以水解木质素为原料,用化学法(ZnCl2为活化剂)制备药用活性炭。研究活化温度、活化时间、料液比(水解木质素与化学药品活化剂溶液的重量比)等对活性炭的得率、硫酸奎宁吸附值和亚甲基蓝吸附值的影响;确定了用水解木质素制备药用活性炭适宜的工艺条件:活化温度为550℃,活化时间为2h,料液比为1∶3.5,ZnCl2溶液浓度为46°Be′(60℃)。结果表明,药用活性炭的得率为50.28%;活性炭的硫酸奎宁吸附值≥120mg/g,亚甲基蓝吸附值180mg/g,pH6.5,铁0.01%,氯化物0.05%,硫酸盐0.05%,灰分2.63%,酸溶物0.6%,水溶性锌盐0.003%,硫化物、重金属(以Pb计)、氰化物、未炭化物均为合格。  相似文献   

2.
生物质活性炭对模拟烟气汞吸附特性的实验研究   总被引:1,自引:1,他引:0  
采用氯化锌作为活化剂制备生物质活性炭,在不同的氯化锌质量分数、活化时间、活化温度条件下,对不同的生物质原料进行活化、碳化,以制备所得活性炭对亚甲基蓝的脱色量为指标,进行正交设计优化.利用吸附性能较好的生物质活性炭,对其进行汞吸附实验.结果表明,生物质活性炭制备的优化工艺条件为:氯化锌质量分数50%,活化时间1.5h,活化温度600℃.在此条件下,毛豆杆活性炭对亚甲基蓝的脱色量为0.15mg/g,对汞4h的吸附量为0.015mg,穿透率为5.30%.由此得出,受原料、活化剂质量分数、活化时间和活化温度等影响,各种活性炭对亚甲基蓝的吸附效率都不同,毛豆杆活性炭对模拟烟气中汞的吸附效果最好,这与其微孔极发达有关.  相似文献   

3.
以黄麻杆为原料,采用磷酸活化法制备活性炭,通过正交试验探讨了磷酸浓度、活化温度、活化时间对活性炭得率和吸附性能的影响,确立了最佳制备工艺,即:磷酸浓度2mol/L、活化温度400℃、活化时间1h.实验结果表明:在最佳工艺条件下制得的黄麻杆活性炭得率为4,2.93%,碘吸附值为1059.26mg/g,亚甲基蓝吸附值为353.10mg/g,比表面积为1779.4m㎡/g,总孔容为0.960m3/g,平均孔径为2.16nm,呈现出高中孔率结构.  相似文献   

4.
以石油渣油为原料采用化学活化法制备活性炭,以亚甲基蓝吸附值为评价活性炭吸附能力指标.首先选择了具有好的活化性能的磷酸为活化剂,进行了最佳制备工艺研究,结果为活化温度550℃、质量比1∶1、活化时间1.5h,最后利用正交实验分析了各因素显著性水平,即活化温度最强、质量比其次、活化时间最弱.  相似文献   

5.
以废料柚子皮为原料,ZnCl2为活化剂,采用微波辐射法制备了活性炭.采用正交实验研究了活化剂浓度、微波功率和活化时间对活性炭得率和吸附性能的影响.同时采用美国ASAP-2020吸附仪测定了所制备活性炭的Na吸附脱附等温线和孔径分布,采用红外光谱分析了样品的表面官能团,采用扫描电镜观察了样品的表面形貌.结果表明:ZnCl2质量浓度为50%,微波功率为850W,活化时间为8min工艺条件下制得的活性炭碘吸附值为1024mg/g;亚甲基蓝吸附值为160mL/g,产率为34.5%;比表面积为1490mm/g,总孔容为1.574cm^3/g,平均孔径为4.225nm.该活性炭为中孔型,比市售活性炭有更加发达的孔隙结构及更多的表面含氧基团,吸附性能优于市售活性炭.  相似文献   

6.
以酒糟渣为原料,采用浓酸炭化法,KOH活化法制备了活性炭。考察了活化温度、活化时间、碱炭质量比以及酒糟渣/KOH质量比对活性炭的影响。采用SEM、BET、FT-IR、XRD对其物化性能进行了表征分析。结果表明:在活化温度为800℃、活化时间为3h、碱炭质量比为3:1、酒糟渣/KOH质量比为4:1时制备的活性炭性能最优。该酒糟渣活性炭吸附孔容为0.88248cm3/g,DFT比表面积为3654.9m3/g,碘吸附值为2216.3mg/g,亚甲基蓝吸附值为389.40mL/g。  相似文献   

7.
响应曲面优化中药材废渣基活性炭的制备   总被引:1,自引:0,他引:1  
采用中药材废渣为原料,以KOH为活化剂,选用响应曲面分析方法设计实验,制备活性炭.以碘吸附值和亚甲基蓝吸附值为响应值,对影响KOH活化法最重要的3个因素浸渍比、活化温度以及活化时间进行优化.结果表明,对于碘吸附值的影响,活化温度浸渍比活化时间,对于亚甲基蓝吸附值的影响,浸渍比活化温度活化时间.所得最优条件为浸渍比3、活化温度744℃、活化时间75min,在此条件下制备的活性炭碘吸附值和亚甲基蓝吸附值分别为723.75mg/g、350.82mg/g,与理论模型值非常接近,说明基于响应曲面法所得的最佳工艺参数准确可靠.通过SEM、热重分析可知该活性炭具有孔隙结构发达、热稳定性高等特点.  相似文献   

8.
甘蔗渣微波制备活性炭吸附剂及其再生研究   总被引:1,自引:0,他引:1  
以甘蔗渣为原料,氯化锌、磷酸和氢氧化钠为活化剂,微波制备活性炭吸附剂,考察了活化剂浓度、料液比、浸渍时间、微波功率和辐射时间等对活性炭产率和吸附性能的影响.活性炭指标为:亚甲基蓝吸附值136 mL/g,碘的吸附值1 163.7mg/g,A法焦糖脱色率108.9%,优于国家一级品指标.用该活性炭处理酱油模拟废液后再生,其亚甲基蓝吸附值为105mL/g,碘的吸附值为1 186.4mg/g,A法焦糖脱色率为111.5%,仍优于国家一级品指标,并且再生活性炭对酱油废液具有更佳的处理效果.该方法操作方便,缩短了活性炭的制备和再生时间,再生效果好.  相似文献   

9.
以林业废弃物杨木屑为原料,采用正交试验法探讨以磷酸为主活化剂,浓硫酸为辅助活化剂,在不同工艺条件下制备活性炭,测定其亚甲基蓝脱色力和碘的吸附值,考虑活化因素对活性炭得率和吸附性能的影响,确定最佳工艺参数.试验结果表明:磷酸-硫酸活化法制备木屑活性炭的最佳工艺条件为浸渍比1∶2.5,浸渍浓度60%,活化时间90 min,活化温度550℃.  相似文献   

10.
对以桐籽壳为原料、用氯化锌法制备活性炭的工艺进行了研究,采用正交试验优化了工艺参数.最佳工艺参数为:料液比质量比1∶2.0、氯化锌质量分数为50%、活化时间60 min、活化温度为60 ℃.在此工艺条件下所制备的活性炭,其碘吸附值为986.35 mg/g,亚甲基蓝吸附值为178.23 mg/g,表观密度为0.423 6 g/mL.  相似文献   

11.
机械活化甘蔗渣的结构与表征   总被引:2,自引:0,他引:2  
采用自制的搅拌球磨机对甘蔗渣进行机械活化, 用扫描电子显微镜、X-射线衍射仪、红外光谱仪等考察了机械活化对甘蔗渣表观形貌、结晶结构、分子基团的影响及变化规律. 结果表明, 机械活化使甘蔗渣颗粒明显细化, 甘蔗渣纤维晶体结构受到破坏、晶粒尺寸减小、结晶度降低, 但活化过程中并没有新的基团产生, 晶体类型保持纤维素Ⅰ型.  相似文献   

12.
利用中心组合设计法(CCD),对蔗渣半纤维素的纤维素溶剂的木质纤维素组分分离(CSLF法)进行优化.在单因素实验的基础上,确定磷酸质量分数、磷酸蔗渣液固比和水浴温度是影响蔗渣半纤维素提取的3个关键因素.以半纤维素提取率为响应目标,采用CCD和响应面分析法(RSM),确定CSLF法半纤维素的最佳提取工艺:磷酸质量分数为83%,磷酸蔗渣液固比为8.95 mL·g-1和水浴温度为48.94 ℃.结果表明:蔗渣半纤维素提取率可达到75.29%,比优化前提高9%.  相似文献   

13.
以甘蔗渣为原料,通过超声波辅助碱性双氧水法进行预处理,接枝改性制备具有高吸水、保水性能的高吸水树脂.研究了丙烯酸/蔗渣配比、引发剂用量、交联剂用量、中和度等因素对高吸水树脂吸水性能的影响;采用傅里叶红外光谱(IR)、X射线衍射(XRD)、扫描电镜(SEM)分别对预处理前后蔗渣及高吸水树脂进行接枝情况、结晶情况、结构与形貌进行表征.结果表明:最佳条件为丙烯酸/蔗渣配比10 mL/g、引发剂用量0.12 g、交联剂用量4 mg、中和度80%;对蔗渣纤维的预处理能够明显提高树脂的吸水性能;室温放置72 h,对去离子水的保水率为97%.该树脂对去离子水、自来水、0.9%NaCl溶液的吸水倍率分别为413、104和14 g/g.  相似文献   

14.
浓酸水解蔗渣纤维质的动力学研究   总被引:5,自引:0,他引:5  
研究硫酸和磷酸水解蔗渣的动力学。考察了酸浓度、固液比、粒度、温度对水解速率和糖产率的影响,以及水解蔗渣的结构特征,如电镜扫描颗粒表面、X—衍射结晶和比表面积等的变化,并建立了水解的动力学模型。  相似文献   

15.
为探究霉变对甘蔗渣厌氧发酵产沼气的影响,本研究选取正常的甘蔗渣和霉变的甘蔗渣,对其结构、理化性质、发酵过程参数和物质去除率进行测定。结果表明,霉变的甘蔗渣结构被破坏,且表面存在较多的附着物和微生物。与正常的甘蔗渣相比,霉变的甘蔗渣含水量提高44.6%,可溶性糖含量降低95.4%,总氮含量提高48.6%,木质纤维素含量增加。在厌氧发酵过程中,正常甘蔗渣的溶解性化学需氧量最高值(3 229.0 mg/L)是霉变的甘蔗渣的3.4倍,且正常的甘蔗渣的总挥发酸(Total Volatile Fatty Acids,TVFA)最大值为1 855.8 mg/L,比霉变的甘蔗渣高26.2%。此外,霉变的甘蔗渣总固体(Total Solids,TS)去除率比正常的甘蔗渣减少17.2%,挥发性固体(Volatile Solids,VS)去除率仅为正常甘蔗渣的56.7%,累积沼气产量和甲烷产量比正常的甘蔗渣分别降低60.6%和77.9%。综上,甘蔗渣霉变后结构遭到破坏,可溶性糖含量急剧下降,产沼气潜力大大降低。  相似文献   

16.
枯草芽孢杆菌发酵蔗渣生产黄腐酸的工艺条件优化   总被引:1,自引:1,他引:0       下载免费PDF全文
对实验室筛选的发酵蔗渣产黄腐酸的4株(25B、BT、12、E)细菌进行工厂扩大发酵,并运用分子生物学方法对高产黄腐酸菌种进行鉴定.研究高产菌种的发酵周期、接种量、发酵培养基初始pH以及发酵堆料层等因素对菌种发酵蔗渣产黄腐酸的影响,利用正交实验方法优化发酵培养基的碳源添加与配比.实验结果表明,E菌株为发酵蔗渣高产黄腐酸的菌种,16SrDNA法鉴定结果为枯草芽孢杆菌.该菌种发酵蔗渣高产黄腐酸的最优条件为:接种菌龄24h,接种量0.05L·kg-1,发酵周期4d,发酵物料初始pH4.正交试验优化发酵培养基的主次顺序为蔗渣麸皮蔗糖淀粉.利用优化后的发酵物料培养基与发酵条件进行发酵,获得的黄腐酸含量为23.90%,较工厂发酵模式的对照组(FA含量14.00%)提高9.90%,FA增长率为70.71%.  相似文献   

17.
蔗渣(髓)是丰富而廉价的可再生生物质资源,利用蔗渣(髓)代替传统的玉米等粮食作物为原料生产生物乙醇已成为研究热点。蔗渣(髓)转化为生物乙醇主要包括3个步骤:预处理脱去木质素、蔗渣(髓)中纤维素水解成还原糖、糖发酵成乙醇。本文阐述蔗渣(髓)经水解转化为生物乙醇处理技术的新进展,并展望其发展前景。  相似文献   

18.
甘蔗渣采用白腐菌生物降解的研究   总被引:1,自引:1,他引:1  
研究了甘蔗渣采用两种白腐菌的生物降解,分析了不同培养条件对木素降解的影响。研究内容包括从自然界筛选分离出一株具有木素降解能力的白腐菌HGX03,并与引进的白腐菌P.chrysosporium进行了处理甘蔗渣的研究和比较。在相同条件下培养14d和28d,P.chrysosporium作用于甘蔗渣的总木素降解率分别为195%和263%,HGX03则分别为152%和227%。HGX03处理后的甘蔗渣白度比P.chrysosporium约高2%(ISO)。供给氧气可以提高白腐菌的木素降解能力,促进作用主要表现在生物处理的中期。附加营养物可以明显地减少处理原料的重量损失,增加木素的降解。与单纯采用菌丝体相比,全培养物接种可以利用白腐菌生长过程中产生的胞外酶,起到增加木素降解速率的效果。  相似文献   

19.
采用饱和溶液法制备了脱氢枞胺(4 羟基)水杨醛Schiff碱β 环糊精包合物,通过红外光谱、差示扫描量热法(DSC)以及紫外光谱对包合物进行鉴定,并对脱氢枞胺(4 羟基)水杨醛Schiff碱及其包合物的抗癌活性进行了研究。结果表明:脱氢枞胺(4 羟基)水杨醛Schiff碱和环糊精可形成摩尔比为1∶1的包合物; β 环糊精可以将脱氢枞胺(4 羟基)水杨醛Schiff碱在混合溶剂(V(DMSO)∶V(H2O)=1∶1)中的溶解度提高34倍; 在质量浓度为10 μg/mL时,脱氢枞胺(4 羟基)水杨醛Schiff碱及其包合物对卵巢癌细胞株(Hey 1B)的抑制率分别达到5034 %和4165 %。  相似文献   

20.
松木屑作为一种废弃的生物质资源,如能将其回收与煤粉掺混后作为锅炉燃料燃烧将具有重大的意义。利用热重分析仪研究了印尼煤与松木屑不同掺混比例(0%、15%、30%、45%、100%)对煤粉燃烧特性的影响,并计算出各掺混不同比例生物质下的动力学参数。结果表明:煤粉中掺混不同比例的松木屑燃烧后其着火温度提高,燃尽温度降低,综合燃烧特性指数降低;在掺混比例为15%时对煤的燃烧特性曲线影响不大,所以掺混15%的生物质是最合理的。随着生物质掺混比例的增加其活化能减少,频率因子降低,在掺混比例为15%时活化能最小,再增加比例后其活化能变化不大。不同掺混比例下反应活化能和频率因子之间存在动力学补偿效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号