首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为了研究微孔层对电池水传输的影响,建立了一个二维稳态两相质子交换膜燃料电池模型.该模型综合考虑了电池中的动量守恒、质量传输、电荷守恒、电化学反应和液态水的凝结.计算分析表明:微孔层具有排水功能,使阴极多余的水迅速通过扩散层排出电池,减缓了电池阴极催化层在大电流密度下的水淹程度,改善了电池内部的水分布,这说明带有微孔层的电池性能更好.  相似文献   

2.
报道了直接电解硫化钠水溶液产生多硫化物溶液的研究电解槽采用阳离子隔膜分为阳极与阴极室,阳极液为Na2S水溶液,阴极液为NaOH水溶液(1mol/dm3)分析了影响电解槽槽电压各成分的分布情况,结果表明,电解温度在61℃时,槽电压可控制在0.9~1.2V之间,电流密度20~30mA/cm2之间,阳极过电位在0.4V以下研究了电解温度、电解时间、硫化钠溶液浓度及电流密度对多硫化物生成效率的影响只有电流密度的大小对生成效率有较明显的影响,而且电流密度在30mA/cm2以上时多硫化物的生成效率显著下降在综合考虑各影响因素的基础上提出了较为合适的电解操作条件图5,参8  相似文献   

3.
空冷型质子交换膜燃料电池内部反应状态是影响电池输出性能和稳定性的关键因素.通过研制空冷燃料电池反应状态的原位测试装置,实现电池温度和电流密度的实时测量,揭示氢气出口脉排间隔、氢气入口气压和阴极风速对电池性能的影响机制.研究表明:空冷电池中温度和电流密度分布不均,平均电流密度为500 mA/cm2时,电池内温度极差达到20℃,电流密度极差达到400 mA/cm2.氢气出口脉排间隔越短、入口气压越大,氢气出口区域性能越好,分布均匀性越好,电流密度波动也越小,输出稳定性提高.如果阴极风速过低,电池局部温度高,温度分布均匀性降低;风速过高则导致生成水被吹走,质子膜含水量下降,电流密度分布均匀性变差.  相似文献   

4.
为使质子交换膜燃料电池(PEMFC)内部的电极反应物和电极产物有一个更加稳定与均衡的分布,在燃料电池传统阴极蛇形流道的基础上,对其U形转弯入口及出口处进行渐缩渐扩处理,使流道U形转弯处侧壁形成一定角度的坡面,并建立了缩放坡面流道的单电池三维数值模型。对比研究了不同几何参数对流道内液态水动力学行为、排水效率、反应气体质量分数、电池最大功率密度的影响,结果表明坡面结构在一定程度上引导了液滴的流动路径,使流道底面的气体扩散层(GDL)附近气流扰动增强,氧质量分数和电流密度分布更加均匀,最大功率密度得到了明显提高,整体上提高了PEMFC内部的传质能力。  相似文献   

5.
为研究质子交换膜燃料电池内水对电池输出性能的影响,搭建了一维燃料电池气液两相流模型,该模型考虑了氧气、氢气、水蒸气和液态水在气体流道、气体扩散层和催化层中的流动以及膜结合水在聚合物中的传输过程,同时考虑了电池内部水的相变。采用该模型分析了进气相对湿度对燃料电池输出性能的影响,结果表明:在小电流密度工况下,高相对湿度入口气体能够降低电池内阻提高输出电压;在进气相对湿度较高和大电流密度条件下,阳极比阴极更容易发生水淹。  相似文献   

6.
目的研究气体扩散层多孔介质渗透率对高温质子交换膜燃料电池(HTPEMFC)性能的影响,优化PEMFC的结构参数,提高电池的整体性能.方法采用多物理场直接耦合分析软件COMSOL Multiphysics,以直通道流场结构的PEMFC在工作电压为0.4V的条件下,对气体扩散层渗透率分别设定为1.18×10-12m2、1.18×10-11m2、1.18×10-10m2以及1.18×10-9m2的HT-PEMFC进行数值模拟和结果分析.结果模拟结果得出了流道内沿流道方向的阴极压力变化、电池电流密度以及阴极气态水浓度的分布情况.结论随着气体扩散层渗透率的增大,能有效降低电池阴极流道内的压降,进而改善电池内部传质、降低额外的功耗,提高电池电流密度以及增强阴极的排水能力.对HT-PEMFC结构的优化和设计具有重要的指导意义.  相似文献   

7.
为了提高催化剂层的特性和PEM燃料电池的性能,加速它的推广和应用.给出了一个PEM燃料电池阴极传热传质的数学模型,模拟研究了阴极催化剂层中氧气体积分数、电流密度、阻抗和温度分布的规律.研究发现:模拟条件下,在阴极催化剂层中的传质中,质子传递过程是阴极性能的控制过程;沿着气体通道方向,催化剂层中的氧气浓度、电流密度、阻抗和温度均渐渐降低;沿着Y轴方向,氧气体积分数,阻抗和温度渐渐降低,而电流密度升高.研究结果对PEM燃料电池阴极结构优化和提高性能具有重要的参考作用.  相似文献   

8.
为了得到水电解的微观解释,为水电解槽的结构参数提供理论指导,对水电解的电极理论及水电解热力学参数进行了研究,并运用ANSYS软件对其电场进行了模拟分析,得到水电解槽的电压分布和电流密度分布,并对其结果进行分析.分析结果表明:出气孔边缘接近电极片处的电压,随着离边缘距离的增大逐渐变小.电极片出气孔边缘处的电流密度最大,使得出气孔与电极片交界处产气量最大,有利于更多的气体顺利排出.  相似文献   

9.
提出了一种实验室用悬浮式阴极铝电解槽的结构形式,并用200 A和300 A该结构电解槽分别进行了纯铝及铝-钪合金的电解试验,用ANSYS软件对电解槽内的电势及电流密度分布进行了有限元分析.结果表明,电解槽的结构是可行的,电流效率可达80%左右,特别适合在实验室中用于铝电解技术的研究.  相似文献   

10.
微流体燃料电池性能的预测(英文)   总被引:1,自引:0,他引:1  
报道了基于微流体技术的燃料电池性能的数值预测.在这种微流体燃料电池中,液态燃料和氧化剂并行流入微通道,电池的内部电流是微通道内离子的横向输运形成的.模型考虑了流体动力、组分的对流和扩散以及发生在电极表面的电化学反应.通过给定一组工作电压,利用FLUENT软件预测对应的电流密度.计算结果表明,计算得到的电池的极化曲线与实验结果吻合较好.随着反应物体积流率的增加,两股流体的混合程度降低,浓度边界层厚度明显减小,电池性能逐渐增加.电池性能对阴极流体中氧气浓度的变化比较敏感,而阳极流体中甲酸浓度的变化对其影响较小.这一计算结果表明这种微流体燃料电池是阴极受限的,这与实验结果一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号