首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein   总被引:105,自引:0,他引:105  
Adult mammalian axon regeneration is generally successful in the peripheral nervous system (PNS) but is dismally poor in the central nervous system (CNS). However, many classes of CNS axons can extend for long distances in peripheral nerve grafts. A comparison of myelin from the CNS and the PNS has revealed that CNS white matter is selectively inhibitory for axonal outgrowth. Several components of CNS white matter, NI35, NI250(Nogo) and MAG, that have inhibitory activity for axon extension have been described. The IN-1 antibody, which recognizes NI35 and NI250(Nogo), allows moderate degrees of axonal regeneration and functional recovery after spinal cord injury. Here we identify Nogo as a member of the Reticulon family, Reticulon 4-A. Nogo is expressed by oligodendrocytes but not by Schwann cells, and associates primarily with the endoplasmic reticulum. A 66-residue lumenal/extracellular domain inhibits axonal extension and collapses dorsal root ganglion growth cones. In contrast to Nogo, Reticulon 1 and 3 are not expressed by oligodendrocytes, and the 66-residue lumenal/extracellular domains from Reticulon 1, 2 and 3 do not inhibit axonal regeneration. These data provide a molecular basis to assess the contribution of Nogo to the failure of axonal regeneration in the adult CNS.  相似文献   

2.
Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration   总被引:156,自引:0,他引:156  
Fournier AE  GrandPre T  Strittmatter SM 《Nature》2001,409(6818):341-346
Nogo has been identified as a component of the central nervous system (CNS) myelin that prevents axonal regeneration in the adult vertebrate CNS. Analysis of Nogo-A has shown that an axon-inhibiting domain of 66 amino acids is expressed at the extracellular surface and at the endoplasmic reticulum lumen of transfected cells and oligodendrocytes. The acidic amino terminus of Nogo-A is detected at the cytosolic face of cellular membranes and may contribute to inhibition of axon regeneration at sites of oligodendrocyte injury. Here we show that the extracellular domain of Nogo (Nogo-66) inhibits axonal extension, but does not alter non-neuronal cell morphology. In contrast, a multivalent form of the N terminus of Nogo-A affects the morphology of both neurons and other cell types. Here we identify a brain-specific, leucine-rich-repeat protein with high affinity for soluble Nogo-66. Cleavage of the Nogo-66 receptor and other glycophosphatidylinositol-linked proteins from axonal surfaces renders neurons insensitive to Nogo-66. Nogo-66 receptor expression is sufficient to impart Nogo-66 axonal inhibition to unresponsive neurons. Disruption of the interaction between Nogo-66 and its receptor provides the potential for enhanced recovery after human CNS injury.  相似文献   

3.
Wang KC  Koprivica V  Kim JA  Sivasankaran R  Guo Y  Neve RL  He Z 《Nature》2002,417(6892):941-944
The inhibitory activity associated with myelin is a major obstacle for successful axon regeneration in the adult mammalian central nervous system (CNS). In addition to myelin-associated glycoprotein (MAG) and Nogo-A, available evidence suggests the existence of additional inhibitors in CNS myelin. We show here that a glycosylphosphatidylinositol (GPI)-anchored CNS myelin protein, oligodendrocyte-myelin glycoprotein (OMgp), is a potent inhibitor of neurite outgrowth in cultured neurons. Like Nogo-A, OMgp contributes significantly to the inhibitory activity associated with CNS myelin. To further elucidate the mechanisms that mediate this inhibitory activity of OMgp, we screened an expression library and identified the Nogo receptor (NgR) as a high-affinity OMgp-binding protein. Cleavage of NgR and other GPI-linked proteins from the cell surface renders axons of dorsal root ganglia insensitive to OMgp. Introduction of exogenous NgR confers OMgp responsiveness to otherwise insensitive neurons. Thus, OMgp is an important inhibitor of neurite outgrowth that acts through NgR and its associated receptor complex. Interfering with the OMgp/NgR pathway may allow lesioned axons to regenerate after injury in vivo.  相似文献   

4.
The capacity of the adult brain and spinal cord to repair lesions by axonal regeneration or compensatory fibre growth is extremely limited. A monoclonal antibody (IN-1) raised against NI-220/250, a myelin protein that is a potent inhibitor of neurite growth, promoted axonal regeneration and compensatory plasticity following lesions of the central nervous system (CNS) in adult rats. Here we report the cloning of nogo A, the rat complementary DNA encoding NI-220/250. The nogo gene encodes at least three major protein products (Nogo-A, -B and -C). Recombinant Nogo-A is recognized by monoclonal antibody IN-1, and it inhibits neurite outgrowth from dorsal root ganglia and spreading of 3T3 fibroblasts in an IN-1-sensitive manner. Antibodies against Nogo-A stain CNS myelin and oligodendrocytes and allow dorsal root ganglion neurites to grow on CNS myelin and into optic nerve explants. These data show that Nogo-A is a potent inhibitor of neurite growth and an IN-1 antigen produced by oligodendrocytes, and may allow the generation of new reagents to enhance CNS regeneration and plasticity.  相似文献   

5.
P75 interacts with the Nogo receptor as a co-receptor for Nogo,MAG and OMgp   总被引:96,自引:0,他引:96  
Wang KC  Kim JA  Sivasankaran R  Segal R  He Z 《Nature》2002,420(6911):74-78
In inhibiting neurite outgrowth, several myelin components, including the extracellular domain of Nogo-A (Nogo-66), oligodendrocyte myelin glycoprotein (OMgp) and myelin-associated glycoprotein (MAG), exert their effects through the same Nogo receptor (NgR). The glycosyl phosphatidylinositol (GPI)-anchored nature of NgR indicates the requirement for additional transmembrane protein(s) to transduce the inhibitory signals into the interior of responding neurons. Here, we demonstrate that p75, a transmembrane protein known to be a receptor for the neurotrophin family of growth factors, specifically interacts with NgR. p75 is required for NgR-mediated signalling, as neurons from p75 knockout mice are no longer responsive to myelin and to each of the known NgR ligands. Blocking the p75-NgR interaction also reduces the activities of these inhibitors. Moreover, a truncated p75 protein lacking the intracellular domain, when overexpressed in primary neurons, attenuates the same set of inhibitory activities, suggesting that p75 is a signal transducer of the NgR-p75 receptor complex. Thus, interfering with p75 and its downstream signalling pathways may allow lesioned axons to overcome most of the inhibitory activities associated with central nervous system myelin.  相似文献   

6.
L Schnell  M E Schwab 《Nature》1990,343(6255):269-272
After lesions in the differentiated central nervous system (CNS) of higher vertebrates, interrupted fibre tracts do not regrow and elongate by more than an initial sprout of approximately 1 mm. Transplantations of pieces of peripheral nerves into various parts of the CNS demonstrate the widespread capability of CNS neurons to regenerate lesioned axons over long distances in a peripheral nerve environment. CNS white matter, cultured oligodendrocytes (the myelin-producing cells of the CNS), and CNS myelin itself, are strong inhibitors of neuron growth in culture, a property associated with defined myelin membrane proteins of relative molecular mass (Mr) 35,000 (NI-35) and 250,000 (NI-250). We have now intracerebrally applied the monoclonal antibody IN-1, which neutralizes the inhibitory effect of both these proteins, to young rats by implanting antibody-producing tumours. In 2-6-week-old rats we made complete transections of the cortico-spinal tract, a major fibre tract of the spinal cord, the axons of which originate in the motor and sensory neocortex. Previous studies have shown a complete absence of cortico-spinal tract regeneration after the first postnatal week in rats, and in adult hamsters and cats. In IN-1-treated rats, massive sprouting occurred at the lesion site, and fine axons and fascicles could be observed up to 7-11 mm caudal to the lesion within 2-3 weeks. In control rats, a similar sprouting reaction occurred, but the maximal distance of elongation rarely exceeded 1 mm. These results demonstrate the capacity for CNS axons to regenerate and elongate within differentiated CNS tissue after the neutralization of myelin-associated neurite growth inhibitors.  相似文献   

7.
Nogo和其受体相互作用可能在抑制神经再生中发挥着重要作用.运用免疫细胞化学方法,本研究观察了Nogo受体(NgR)在中菊头蝠脑中的分布.结果显示NgR在中菊头蝠脑皮层各层均有表达.在海马,NgR主要分布在CA1、CA3和DG区的神经细胞胞膜、胞质或/和突起上.杏仁核、丘脑、室旁核、视上核、视交叉上核等也有NgR阳性神经细胞着色.在脑的白质,轴突着色明显.小脑的分子层、Purkinje细胞层和颗粒细胞层均有NgR免疫阳性反应,其中阳性反应的颗粒细胞最多.这些提示NgR可能介导其配基对中菊头蝠脑多个区域的神经细胞起作用.  相似文献   

8.
Nogo是一类中枢髓鞘源性抑制蛋白,主要由少突胶质细胞表达,是抑制中枢神经元轴突再生的抑制因子。这些研究成果为探讨CNS损伤的治疗提供了新思路。论文综述了Nogo的结构及在CNS中对神经元轴突再生的抑制作用。  相似文献   

9.
Chondroitinase ABC promotes functional recovery after spinal cord injury   总被引:82,自引:0,他引:82  
The inability of axons to regenerate after a spinal cord injury in the adult mammalian central nervous system (CNS) can lead to permanent paralysis. At sites of CNS injury, a glial scar develops, containing extracellular matrix molecules including chondroitin sulphate proteoglycans (CSPGs). CSPGs are inhibitory to axon growth in vitro, and regenerating axons stop at CSPG-rich regions in vivo. Removing CSPG glycosaminoglycan (GAG) chains attenuates CSPG inhibitory activity. To test the functional effects of degrading chondroitin sulphate (CS)-GAG after spinal cord injury, we delivered chondroitinase ABC (ChABC) to the lesioned dorsal columns of adult rats. We show that intrathecal treatment with ChABC degraded CS-GAG at the injury site, upregulated a regeneration-associated protein in injured neurons, and promoted regeneration of both ascending sensory projections and descending corticospinal tract axons. ChABC treatment also restored post-synaptic activity below the lesion after electrical stimulation of corticospinal neurons, and promoted functional recovery of locomotor and proprioceptive behaviours. Our results demonstrate that CSPGs are important inhibitory molecules in vivo and suggest that their manipulation will be useful for treatment of human spinal injuries.  相似文献   

10.
Retinal ganglion cells lose response to laminin with maturation   总被引:5,自引:0,他引:5  
J Cohen  J F Burne  J Winter  P Bartlett 《Nature》1986,322(6078):465-467
The decisive role played by adhesive interactions between neuronal processes and the culture substrate in determining the form and extent of neurite outgrowth in vitro has greatly influenced ideas about the mechanisms of axonal growth and guidance in the vertebrate nervous system. These studies have also helped to identify adhesive molecules that might be involved in guiding axonal growth in vivo. One candidate molecule is laminin, a major glycoprotein of basal laminae which has been shown to induce a wide variety of embryonic neurones to extend neurites in culture. Moreover, laminin is found in large amounts in injured nerves that can successfully regenerate but is absent from nerves where regeneration fails. However, it is unclear to what extent the mechanisms that regulate axonal regeneration also operate in the embryo when axon outgrowth is initiated. Here we have examined the substrate requirements for neurite outgrowth in vitro by chick embryo retinal ganglion cells, the only cells in the retina to send axons to the brain. We show that while retinal ganglion cells from embryonic day 6 (E6) chicks extend profuse neurites on laminin, those from E11 do not, although they retain the ability to extend neurites on astrocytes via a laminin-independent mechanism. This represents the first evidence that central nervous system neurones may undergo a change in their substrate requirements for neurite outgrowth as they mature.  相似文献   

11.
12.
13.
小鼠视神经再生研究动物模型的建立   总被引:1,自引:0,他引:1  
目的总结制作小鼠视神经完全截断性动物模型作为视神经再生研究的经验和体会。方法将雄性Bcl-2高表达转基因小鼠(Bcl-2 transgenic mice)和受GFAP启动子控制表达疱疹病毒-胸苷激酶转基因雌性小鼠(GFAP-TK)交配产生的4只8~12周成年小鼠(20~30g),Bcl-2/GFAP-TK双转基因小鼠作为实验组,同周龄4只Bcl-2转基因小鼠作为对照组。其中Bcl-2/GFAP-TK双转基因小鼠皮下植入缓释泵,连续7d释放更昔洛韦(GCV)100mg.kg-1.d-1以选择性地去除视神经损伤后激活的星形胶质细胞。更昔洛韦缓释泵植入术后2d在两组动物中制作右侧单眼标准完全性视神经钳夹损伤模型,视神经钳夹10d后获取组织标本。采用免疫荧光染色特异性检测再生轴突纤维并进行定量分析;结合罗丹明的霍乱毒素B亚单位(CTB-R)或增强表达绿色荧光蛋白的复制缺陷型腺相关病毒(AAV-EGFP)用作顺行性标记物以显示再生轴突是否到达大脑靶器官。结果在Bcl-2/GFAP-TK双转基因小鼠中存在免疫荧光阳性的再生视神经轴突,再生轴突计数为71.99±24.04,并可见生长锥(growth cone)样结构,但是再生轴突纤维未能延伸达到大脑靶器官。在对照组Bcl-2转基因小鼠中未见明显再生迹象。结论小鼠视神经完全截断性动物模型可用于视神经病变的再生研究。  相似文献   

14.
Induction of glia-derived nexin after lesion of a peripheral nerve   总被引:10,自引:0,他引:10  
R Meier  P Spreyer  R Ortmann  A Harel  D Monard 《Nature》1989,342(6249):548-550
  相似文献   

15.
为了分析大鼠弥漫性轴索损伤(DAI)后病理学变化及核因子-κB(NF-κB)的表达,探讨了NF-κB在弥漫性轴索损伤中的作用,构建了大鼠DAI动物模型.运用Glees-Marsland染色法和Weil氏染色法观察伤后不同时间段的病理学改变,并运用免疫组化SABC法观察NF-κB的表达.实验结果表明,大鼠弥漫性轴索损伤后1h即可观察到部分轴索肿胀、断裂,髓鞘水肿、分层等现象,24h可见典型轴索收缩球形成,髓鞘崩解呈筛网状改变,72h轴索断裂数量、范围及髓鞘筛网状改变达到高峰;伤后1h,脑组织内可见NF-κB阳性细胞,伤后3h阳性细胞数增多,伤后24h达到高峰,持续到72h,伤后7d,仍可见阳性细胞表达,但数量减少.对照组细胞核未见阳性表达.大鼠弥漫性轴索损伤后NF-κB表达增加,可能与轴索继发性损伤有关.  相似文献   

16.
本文阐述了外周神经溃变的几种类型,诸如顺行性变性;逆行性变性;跨神经元变性及其它变性.其中包括外周神经系统的变性,也涉及到中枢神经系统.当轴突受到破坏后,几种变性都可能发生.轴突的再生过程非常重要,但它必须是在神经元胞体完好无损的情况下才能进行.此过程与几种因素相关.  相似文献   

17.
M Moos  R Tacke  H Scherer  D Teplow  K Früh  M Schachner 《Nature》1988,334(6184):701-703
Diverse glycoproteins of cell surfaces and extracellular matrices operationally termed 'adhesion molecules' are important in the specification of cell interactions during development, maintenance and regeneration of the nervous system. These adhesion molecules have distinct functions involving different cells at different developmental stages, but may cooperate when expressed together. Families of adhesion molecules which share common carbohydrate domains do exist, despite the structural and functional diversity of these glycoproteins. These include the Ca2+-independent neural adhesion molecules: N-CAM, myelin associated glycoprotein (MAG) and L1. L1 is involved in neuron-neuron adhesion, neurite fasciculation, outgrowth of neurites, cerebellar granule cell migration, neurite outgrowth on Schwann cells and interactions among epithelial cells of intestinal crypts. We show here that in addition to sharing carbohydrate epitopes with N-CAM and MAG, L1 is also a member of the immunoglobulin superfamily. It contains six C2 domains and also shares three type III domains with the extracellular matrix adhesion molecule fibronectin.  相似文献   

18.
B B Stanfield  D D O'Leary 《Nature》1985,313(5998):135-137
In adult rats, cortical neurones that send axons through the pyramidal tract are confined to layer V, over the rostral two-thirds of the cerebral hemisphere. However, during the first postnatal week, many neurones in layer V in the occipital cortex (including the visual cortex) also extend axon collaterals through the pyramidal tract and into the spinal cord. These occipital corticospinal collaterals are completely eliminated over the subsequent 2 weeks, although their cells of origin do not die. We now report that when portions of the occipital cortex from fetal rats are transplanted to more rostral cortical regions of newborn rats, some of the transplanted neurones not only extend axons through the pyramidal tract, but also maintain these axons beyond the stage at which they are normally eliminated. These results suggest that normally-eliminated cortical axons can be 'rescued' and, in the case of pyramidal tract neurones, the position of the neurones within the tangential plane of the cortex is a critical factor in determining which neurones retain and which lose their pyramidal tract collaterals.  相似文献   

19.
Proteolytic processing of amyloid precursor protein (APP) generates amyloid-beta peptide and has been implicated in the pathogenesis of Alzheimer's disease. However, the normal function of APP, whether this function is related to the proteolytic processing of APP, and where this processing takes place in neurons in vivo remain unknown. We have previously shown that the axonal transport of APP in neurons is mediated by the direct binding of APP to the kinesin light chain subunit of kinesin-I, a microtubule motor protein. Here we identify an axonal membrane compartment that contains APP, beta-secretase and presenilin-1. The fast anterograde axonal transport of this compartment is mediated by APP and kinesin-I. Proteolytic processing of APP can occur in the compartment in vitro and in vivo in axons. This proteolysis generates amyloid-beta and a carboxy-terminal fragment of APP, and liberates kinesin-I from the membrane. These results suggest that APP functions as a kinesin-I membrane receptor, mediating the axonal transport of beta-secretase and presenilin-1, and that processing of APP to amyloid-beta by secretases can occur in an axonal membrane compartment transported by kinesin-I.  相似文献   

20.
K Goslin  D J Schreyer  J H Skene  G Banker 《Nature》1988,336(6200):672-674
Outgrowth of distinct axonal and dendritic processes is essential for the development of the functional polarity of nerve cells. In cultures of neurons from the hippocampus, where the differential outgrowth of axons and dendrites is readily discernible, we have sought molecules that might underlie the distinct modes of elongation of these two types of processes. One particularly interesting protein is GAP-43 (also termed B-50, F1 or P-57), a neuron-specific, membrane-associated phosphoprotein whose expression is dramatically elevated during neuronal development and regeneration. GAP-43 is among the most abundant proteins in neuronal growth cones, the motile structures that form the tips of advancing neurites, but its function in neuronal growth remains unknown. Using immunofluorescence staining, we show that GAP-43 is present in axons and concentrated in axonal growth cones of hippocampal neurons in culture. Surprisingly, we could not detect GAP-43 in growing dendrites and dendritic growth cones. These results show that GAP-43 is compartmentalized in developing nerve cells and provide the first direct evidence of important molecular differences between axonal and dendritic growth cones. The sorting and selective transport of GAP-43 may give axons and axonal growth cones certain of their distinctive properties, such as the ability to grow rapidly over long distances or the manner in which they recognize and respond to cues in their environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号