共查询到20条相似文献,搜索用时 62 毫秒
1.
语音识别中信号特征的提取和选择 总被引:5,自引:0,他引:5
王昆仑 《新疆师范大学学报(自然科学版)》2000,19(2):15-18
本就语音识别中的各种特征参数的性能,提取算法等进行了分析和比较。根据选择特征参数的主要依据,选择LPCC和ARAC作为基本特征参数和动态特征参数,并应用于一个维吾尔语语音识别系统中,取得了很好的识别结果。 相似文献
2.
3.
针对发音偏误检测系统语音标注费时、费力和标注不一致的问题, 基于发音特征, 构建偏误检测系统, 给出Top-N的识别结果, 通过praat软件呈现机器初步标注文本, 在此基础上进行人工二次标注。实验结果表明, 与单纯的人工标注相比, 所提出的自动标注加人工二次标注方法在标注一致性上从80.7%提高到92.48%, 平均每个句子的标注时间从10分钟减少到3分钟。所提方法有效地提高了人工标注的效率, 可以在有限时间内为识别系统提供更多可靠的标注语料。 相似文献
4.
为了提升计算机辅助发音训练(CAPT)系统中发音偏误趋势(PET)的检测效果,确保反馈信息的准确性与有效性,提出一种基于对数似然比的发音特征方法。该方法将多个基于深度神经网络的发音特征提取器用于生成帧级别的对数似然比,然后将对数似然比组成的发音特征用于PET的检测,为学习者提供发音位置和发音方法的正音信息。实验结果表明,发音特征对PET的检测效果优于常用声学特征(MFCC,PLP和f Bank),当发音特征与MFCC特征相结合时,可以进一步提升性能,达到错误接受率为5.0%,错误拒绝率为30.8%,诊断正确率为89.8%的检测效果。 相似文献
5.
为研究广东话、客家话、潮州话和普通话的发音差异性,提出了一种基于发音特征的方言识别系统。本研究采用DKU-JNU-EMA数据库,以广东话、客家话、潮州话和普通话为研究对象,通过端点检测法实现对数据集的预处理,提取了数据集中发音器官的位移、速度和加速度参数,并对发音运动器官进行了空间和速度的统计学分析,然后选用随机森林和支持向量机分类器对所取的提特征集进行识别分类。实验结果表明,本文提取的发音特征在机器学习分类器的识别分类中是有效的,选用支持向量机做分类器时,在齿龈位置的分类平均准确率达到83.1%。 相似文献
6.
维语口语发音中很多音素相对标准语产生了发音变异,基于标准语音的识别系统在识别带有发音变异的口语语料时识别率较低。该文针对维吾尔语同化、弱化、脱落、元音和谐等语流音变难点进行分析,对语音、韵律特性进行知识融合与技术创新,运用基于数据驱动和基于专家经验相结合的方法对维吾尔语方言口语中存在的发音变异现象进行研究,统计元音、辅音多发音变化映射对,建立音素混淆矩阵,为维吾尔语方言口语语音识别研究奠定基础。 相似文献
7.
结合高斯混合模型(GMM)和嗓音起始时间(VOT)特征的普通话音素发音错误检测,提出了一种结合语音声道特征信息和音源特征信息的发音错误检测方法。其中GMM用于反映声道特征信息的MFCC参数的建模与评测,并直接对大部分音素的发音质量直接进行错误检测。对于少数通过MFCC参数和GMM难于检测区分的辅音音素,则通过反映VOT信息的音源特征参数进行区分。实验表明,该方法在训练数据有限的情况下取得了较好的性能,非常适合用于聋人语言康复的计算机辅助训练。 相似文献
8.
实际环境下,一个说话人识别系统的性能受到很多因素的影响,说话人自身发音方式的变化所引起的训练与识别语音的不匹配是其中很重要的一个方面。该文以一个含有多种发音方式变化的数据库为基础,对于不限定发音方式变化类型的情形,在分数域提出了一系列发音方式分数规整(S-Norm)的解决方法。实验结果表明:SZ-Norm、ST-Norm及SZT-Norm的做法均使系统的整体性能在基线基础上有了明显提高,尤其是在SZT-Norm的情况下等错误率下降约为27%,这说明基于分数规整的方法是有效的。 相似文献
9.
说话人识别的参量研究和语音库建设 总被引:4,自引:0,他引:4
本文对说话人识别中的几个基本问题进行了研究。语音参量是说话人识别的基础,用矢量量化方法,使用自建的语音库中的材料,研究了说话人识别中的各种参量的效果。实验表明,所采用的参量中,一种混合参量MC最好,倒谱系数CE次之。 相似文献
10.
该文基于优化的检测网络和多层感知(multi-layerperception,MLP)特征,提出一种可以更加准确地检测出错误发音类型的方法。首先,从第二语言学习的语音库中提取出基本的发音规则以及组合的发音规则,并相应地计算它们发生的先验概率,再将这些具有先验概率的规则用于构建基于多发音的扩展检测网络。然后在检测过程中,引入基于发音特征的MLP特征来描述发音概率,替代了传统的语音声学特征。最后使用基于MLP特征的GMM-HMM框架从检测网络中识别出最可能的发音音素串。实验表明:该方法将音素识别正确率提高了3.11%,错误类型准确率提高了7.42%。 相似文献
11.
在人脸特征提取与选择方法的研究中,提出了以Zl-Zr法为基础,通过对特征分量判据J的计算,不断通过交替增加或剔除特征来得到优化解。同时,为了解决该方法存在的特征分量相关度和计算复杂度的问题,使用K-L变换法对n维原始特征组成的向量进行线性正交变换,以使特征在一个新的空间内不再相关。进而,再通过调整参数使得在进行特征选择时的计算复杂度大幅降低,使该方法的实用性提高。 相似文献
12.
随着待识别人数的增加,文本无关的说话人识别准确率下降明显. 针对这一问题提出了一种高准确率大规模说话人识别方法,该方法采用多个连续音频帧的声学帧特征构成声学特征图,进而获得高维度的2D-Haar声学特征,为训练出性能更优的分类器提供可能;再利用AdaBoost.MH算法筛选出具有较好区分度的2D-Haar声学特征组合进行分类器训练. 实验结果表明,600人规模下的正确识别率为89.5%,100~600人规模下的平均准确率为91.3%. 该方法适用于大规模说话人的识别,引入的2D-Haar声学特征有效,识别准确率高. 此外,该方法还具有较低的算法复杂度和较高的时间效率. 相似文献
13.
基于小波变换的说话人语音特征参数提取 总被引:1,自引:3,他引:1
在说话人识别系统中,提取反映说话人个性的语音特征参数是系统的关键问题之一,本文在研究小波变换理论的基础上,借鉴MFCC参数的提取方法,用小波变换代替傅立叶变换,提取了新的特征参数DWTMFC,并对常用的coif3、db6、db4、sym4、bior2.4这几种小波函数进行了比较,实验结果表明:coif3为提取语音特征参数的最优小波函数,DWTMFC参数的性能优于MFCC参数。 相似文献
14.
常用的加权算法难以跟踪非常态语音特征的变异,为此,文中提出了一种变异特征加权的异常语音说话人识别算法.首先统计大量正常语音各阶MFCC特征的概率分布,建立正常语音特征模板;然后用测试语音特征与正常语音特征模板之间的K-L距离和欧氏距离来度量语音的变异程度,确定K-L加权因子和欧氏加权因子;最后利用加权因子对测试语音的MFCC特征进行加权,并将加权后的特征输入高斯混合模型进行异常语音说话人识别.实验结果表明,文中提出的K-L加权和欧氏加权的异常语音说话人识别算法的整体识别率分别为46.61%和42.25%,而基于各阶特征对说话人识别贡献的加权算法和不加权算法的整体识别率分别为39.68%和36.36%. 相似文献
15.
针对单一声学特征和k-means算法在说话人聚类技术中的局限性,为了更好地表达说话人的个性信息并提高说话人聚类的准确率,将特征融合和AE-SOM神经网络应用于说话人聚类中,提出一种改进的说话人聚类算法.该算法通过对语音信号特征分析,将MFCC特征参数和LPCC特征参数相结合,从而完善说话人的个性信息.并在k-means... 相似文献
16.
本文介绍了一个实时、有效的话者自动验证系统,重点对话者验证的机理进行了分析,并对与验证系统有关的几个主要问题作了简要的说明。该系统的主要特点是:选择了最能反映话者特征的基音和第二、三共振峰频率及其时变特性作为特征参数,有效地保证了系统验证的正确率;硬件上采用了以高速处理芯片C25作成的语音处理板,保证了话者验证中大量的计算工作的实时性;结构上将语音处理板作成PC机的插板形式,用户能通过PC机的友好人机接口对其实施各种有效的管理。目前该系统已在PC机上试制成功,初步测试表明达到了研制要求。 相似文献
17.
基于G.729编码参数的语音特征及其应用 总被引:1,自引:1,他引:1
目的从低比特率语音编码参数中直接提取语音特征。方法针对G.729编码技术提出了一种从编码参数直接计算倒谱系数和基音/能量轨迹特征的方法。结果该方法通过对残差信号进行线性预测分析,提高了谱包络的精确程度,并从码本增益和延时参数中得到了基音/能量轨迹特征。结论说话人识别的实验结果显示,新方案能够使得基于G.729编码参数的说话人识别效果得到较明显的提高,达到了用解码语音进行识别的水平。 相似文献
18.
为提高说话人识别系统的识别率,提出了一种提取Mel频率倒谱系数(MFCC)与差分特征组合参数的方法:先对传统的MFCC参数进行特征分量归一化处理,提升MFCC系数的噪声鲁棒性;再用高斯混合模型(GMM)构建了说话人识别系统。使用TIMIT语音库进行实验测试,并比较了不同高斯混合数的MFCC特征参数组合对识别率的影响。结果表明:使用改进的MFCC混合参数明显地提高了说话人的识别率。 相似文献
19.
特征选择在模式识别技术中起着非常重要的作用,用信息论的方法进行特征选择还是一个新课题.MIFS和MIFS-U是两种用信息论方法进行特征选择的近似算法,MIFS和MIFS-U算法都有一个考虑输入特征之间信息冗余的权重系数,MIFS-U算法还有一个条件限制.当条件不满足或权重系数取值不合适时,这两种算法的特征选择性能就会下降.通过研究这两种算法,借助互信息的概念提出一种新的信息论特征选择算法MIFS-D.和MIFS、MIFS-U算法相比,MIFS-D是一种更精确的算法,去掉了限制条件和权重系数.将3种算法应用于几个分类问题,结果表明MIFS-D算法具有相对更好的特征选择性能. 相似文献
20.
在说话人识别系统中,提高反映说话人个性的语音信号特征参数的有效性和实时性是问题之一.本文在使用线性预测系数倒谱(LPCC)和美尔倒谱系数(MFCC)计算特征参数的基础上利用Fisher准则,构造了一种新的混合特征参数.这种新的参数在不增加系统计算量的同时,结合了LPCC和MFCC各自的优点,具有更好地表征说话人特征的能力,并在一定程度上消除特征的信息冗余,有利于信息的实时处理. 相似文献