首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
文章建立SRV(运动休闲车)车室声腔的声学模型,计算声腔的声学模态,并与白车身结构模态对比,分析声学模态和结构模态的耦合情况;根据车身频率响应,分析车内噪声声场及车身板件的结构振动对车内声学贡献的影响,车内噪声声场得到实验验证,为降低车内结构噪声提供依据.  相似文献   

2.
为了解决XMQ6182G型客车在30~80 km·h-1匀速行驶时驾驶位存在低频轰鸣声的问题,开展实车噪声和振动测试,发现驾驶位噪声频率约为14.0 Hz时,出现驾驶位噪声声压级峰值.经对比分析和测试,确定轰鸣声主要来自路面激励,并构建车身结构和车内空腔的有限元模型,进行模态分析.结果表明:驾驶位低频轰鸣声是由车身第3阶结构模态与车内空腔第1阶声学模态的强耦合引起的;改进客车顶盖结构后,驾驶位噪声声压级最大降幅为4.7 dB(A).  相似文献   

3.
基于车身板件声学贡献分析的声振优化   总被引:1,自引:0,他引:1  
以降低车内低频结构噪声为目标,优化车身板件.采用子结构模态综合的方法建立结构动力学模型,并以其在实车工况下的振动响应作为声学边界元模型的边界条件,以车内驾驶员右耳位置为目标响应点,结合计算得到的声传递向量,对汽车车身进行板件声学贡献分析.通过计算得到车身各板件对车内噪声的声学贡献,分析出影响比较显著的关键面板,根据分析结果对车身相应板件进行振动抑制.经试验验证,怠速工况下,车内噪声在频率为20~100 Hz范围内的声压级水平得到比较明显的改善,主要峰值频率最大降幅5.70 dB,整体噪声水平下降了3.89 dB.结果表明:板件贡献分析方法可以为控制车内低频噪声提供合理的建议.  相似文献   

4.
采用有限元(FEM)和边界元(BEM)联合的方法对燃料电池轿车车内结构声进行预测和控制研究,提出了基于FEM/BEM的车内结构声分析方法和流程,建立了车身有限元模型和声学边界元模型,施加实测的激振力计算声学响应,通过试验数据验证了仿真模型,并进行误差分析.提出板件声学贡献分析的指导原则,介绍板件贡献分析原理和方法,进行所关注频率的车身板件声学贡献分析.最后根据分析结果对车身板件采取约束阻尼处理等控制措施,通过虚拟验证改进结果,车内低频噪声明显降低,其中后座椅和前地板改进最明显,证明所提出方法的可行性,达到优化燃料电池轿车车内噪声的目的.  相似文献   

5.
以高速列车为研究对象,利用有限元法建立其车身结构和车室空腔模型,并建立车室声固耦合模型,计算出考虑声固耦合时车身模态与相应的结构模态,经分析得出:车室声腔对车身的作用不能忽略。为了了解高速列车的车内噪声情况,在高速列车上进行了现场噪声测试,得出车体振动主要引发车内中低频段噪声。另外,在考虑车身内饰和座椅吸声性能情况下,对车内噪声进行仿真和计算,获得了车内噪声的声场分布情况,从而可以指导高速列车车体结构的低噪声设计,节约产品研发时间及成本。  相似文献   

6.
针对橡胶薄层与空腔的声学耦合,提出一种结构-声耦合解析模型,并基于该模型对密封条的材料与几何参数进行优化。通过加入余弦辅助函数,得到空腔的声学模态振型函数。利用瑞利-里兹法,建立简支双薄层结构振动与空腔声学耦合的解析模型。利用该模型分别计算单点激励的均方响应和扩散声场激励的隔声。通过与阻抗-迁移率方法和混合有限元-统计能量分析(FE-SEA)方法的计算结果对比,验证了该解析模型的准确性。结果表明:与FE-SEA方法相比,该解析模型具有较高的计算效率;利用该解析模型和粒子群算法优化材料与几何参数,使得隔声提高10 dB以上;优化的密封条趋向于扁而宽的截面。  相似文献   

7.
提出了统计声学能量流(statistical acoustic energy flow,SAEF)方法,将不同物理场的激励耦合后加载到高铁SAEF模型上,计算车外激励与车内声场及车内声腔之间的声能流动,可分析车内全频噪声.首先,采用刚性多体动力学、快速多极边界元和大涡模拟提取了350,km/h下的轮轨力/二系悬挂力、轮轨噪声和空气动力噪声,并且这些激励通过了参考文献试验的验证.其次,搭建了车厢有限元模型,基于多点激励-多点响应技术验证了车厢仿真模态,证明了整体的车厢及区域的铝型材-内饰组合板的精度,间接保证了基于模态特性的组合板隔声量的准确度.最后,搭建了SAEF模型,加载耦合激励并定义组合板隔声性能后,计算了350,km/h下、0~4,000,Hz内的车内噪声.对比车内中心声腔的仿真与试验声压级,结果显示两者的变化趋势基本一致,声压级总值相差2.6,d B(A),符合工程要求,验证了SAEF方法应用于高铁车内全频噪声研究的可行性.  相似文献   

8.
针对国内高速列车的简化结构模型,采用Virtual Lab Acoustics专业声学求解器,建立了车厢结构声场耦合分析模型,对车厢结构模态、室内空腔模态及室内声振耦合系统进行了模型化分析.理论分析结果表明:在21.24 Hz和35.53 Hz处,车身结构模态的振动频率和空腔模态的振动频率接近,产生共振;在同一水平面上场点声压呈现强弱交替分布,随着频率的增加,车厢内部同一平面上沿横向和纵向的干涉条纹增加;不同测点声压级差异明显,噪声空间分布不均;在20~38Hz频段,声压级处于80 dB以上.  相似文献   

9.
首次研究了颗粒阻尼对封闭空腔内场点声压的影响。通过推导声压的计算公式,揭示了声压与模态振型之间的联系。通过某轿车车身简化缩小模型的模态试验,研究了其模态振型的构成。并通过在此封闭空腔的低阶振型内相对位移较大的面上布置颗粒阻尼,降低了此封闭空腔内参考点的声压。结果显示,相比无颗粒阻尼,当颗粒阻尼安装于此封闭空腔的第一阶模态振型内相对位移较大的面上时,封闭空腔内参考点的A计权声压级降低程度最大,由104.56 d B降至101.03 d B,下降了约3.4%。  相似文献   

10.
利用小波分析技术研究燃烧压力高频振荡   总被引:1,自引:0,他引:1  
为研究内燃机缸内压力高频振荡的机理以及压力高频振荡对燃烧噪声的影响,利用小波分析提取缸内压力高频成分,确定缸内压力高频振荡出现的范围.用有限元方法计算不同曲轴转角下对应燃烧室空腔声模态,用声响应法测量不同曲轴转角下燃烧室空腔声模态,并对计算值和测量值进行比较和修正.对实测的缸内燃烧压力信号进行了分析.有限元计算结果与模态试验结果较吻合,声模态修正后的结果能很好地解释缸内燃烧压力高频振荡.研究表明,缸内燃烧压力高频振荡是燃烧室空腔共振引起的,燃烧压力高频振荡是影响燃烧噪声的重要因素.  相似文献   

11.
基于灵敏度分析的车门轻量化研究   总被引:1,自引:1,他引:0  
利用Hyperworks建立某车型车门的有限元模型,对车门固有频率、下沉刚度进行求解,并通过模态试验验证了有限元模型的有效性。为了提高结构优化效率,采用灵敏度分析方法确定对车门质量、下沉刚度和一阶固有频率敏感的部件。然后,以质量和下沉刚度为设计目标,一阶固有频率为约束条件对车门相应部件厚度尺寸进行多目标优化设计。计算结果显示,优化后的车门质量下降明显,下沉刚度有所提高,且一阶固有频率基本保持不变,实现了结构的轻量化目标。  相似文献   

12.
新开发某车型车门约束模态仿真分析   总被引:2,自引:1,他引:1       下载免费PDF全文
基于模态分析理论,运用CAE软件ANSYS对某型车车门进行了约束模态分析。首先运用CAD软件CATIA,创建了车门模型,在能够反映车门结构的主要动态特性的基础上,对车门进行了部分简化。其次采用壳单元Shell63,对整个车门模型进行网格划分,建立了车门的有限元模型。然后通过ANSYS分析,得到了车门的振动频率与振动类型。最后研究了车门材料、厚度和车门的结构变化对车门振动频率的影响,得出材料和厚度对车门的振动频率没有显著的影响,而其结构的变化对车门振型和频率有显著的影响。在此基础上,对车门进行了机构优化,避免共振以改善整车的乘坐舒适性。  相似文献   

13.
采用有限元分析软件ANSYS对汽车仪表板横梁焊接支架进行模态分析,得到支架的前6阶固有频率和振型。结果表明,横梁支架低阶固有频率远离汽车发动机的怠速激振频率,不会出现整体共振现象;横梁支架结构优化时,要重点考虑驾驶舱面板左右安装支架、中部左右连接支架以及离合器踏板支架等构件。  相似文献   

14.
基于有限元-无限元理论,建立某型车辆的有限元模型,并对车辆近场监测点、远程监测面及无限元边界面进行设置,利用直接频响方法对头车、中间车及尾车的关键区域在不同频率下的声场特性进行分析。计算结果表面:头车和尾车区域在低频区段时车体顶部平滑区域的声辐射较小,在车体鼻尖及其下方的转向架区域的声压级较大,其中尾车后方区域内的相比头车的声压级水平和声辐射范围偏大,存在明显的流场影响,但在高频区段时其整体声压级均匀且水平较低。中间车区域在低频区段时受电弓区域的声压级水平很高,尤其在碳滑板和底架处尤为明显,其次在转向架区域的声辐射能力也较大,随着频率的提升,其能量也有显著的衰减。研究结果对高速列车的气动声学设计具有一定的参考价值。  相似文献   

15.
微型轿车的降噪实验   总被引:1,自引:4,他引:1  
针对某微型轿车采用汽车扣速行驶车外噪声分离实验和声强法识别噪声源。发现进气噪声是造成车外加速噪声偏高的主要原因。在对发动机进气噪声进行频谱分析后,找到进气噪声的主要峰值频率,设计出一种三腔并联共振式消声器,使进气噪声得以有效的控制。通过道路实验与发动机台架实验评价,整车车外加速噪声降到72.3dB(A),降噪量达7.9dB(A),而发动机输出功率没有明显变化。  相似文献   

16.
电梯轿厢随行电缆有碍美观且需要定期维护,为了摆脱对随行电缆的依赖,设计了一种新颖的电梯轿厢无随行电缆非接触供电系统,采用高频松耦合变压器实现电能的非接触传输.电梯轿厢升降运动时利用蓄电池的储能供电,非接触供电系统处于关闭状态;在每个楼层平层静止时,系统收到电梯平层信号,系统启动供电并对蓄电池充电.这种供电方式可以提高供电效率,减少高频电磁污染.分析了松耦合变压器的等效电路模型,研究了工作气隙、工作频率、补偿电容等对供电效率的影响.根据系统要求设计了简单高效的大功率开关电源充电器,稳压效果好,可靠性高.  相似文献   

17.
本文基于实际车型,建立整车碰撞仿真模型,结合LS-DYNA对该车进行侧面碰撞仿真,确认侧结构的变形形态及侵入量,结合试验对车辆侧面结构进行优化设计。  相似文献   

18.
采用基于轨道不平顺谱的最优控制及包括轮轴间时延的预瞄控制算法,设计了整车的主动悬挂控制规律,对铁道车辆弹性车体垂向动力学模型进行仿真分析.结果表明,基于轨道谱的预瞄控制算法在控制输出力及抑制车体的振动效果方面要略优于单纯基于轨道谱的最优控制算法;基于轨道谱的最优控制可以改善轨道至弹性车体中部的加速度传递率,在控制车体刚体振动的同时,也能抑制车体的整体弹性振动;最优控制算法对车体系统的低频振动及车体弹性一阶垂向弯曲振动控制作用明显,而对车体高频振动基本无抑制作用,据此可以帮助选择助动器的响应频率范围.  相似文献   

19.
为定量分析影响使用共享汽车出行的主要因素,以543份有效调查问卷收集的数据为基础,从个体特征、出行特征和出行者对共享汽车服务水平的主观感知3个方面开展研究,分别运用有序Logit模型和多项Logit模型建立共享汽车出行频率预测模型,并对比预测精度。结果表明,职业类型、对共享汽车舒适性、便利性、经济性和时耗性的主观感知5个变量与共享汽车出行频率显著相关。有序Logit模型和多项Logit模型的平均预测准确率分别为78.41%和92.40%,多项Logit模型的预测效果较好。  相似文献   

20.
运用有限元软件建立高速列车CRH3承载结构有限元模型,分析了当承载结构发生改变时使车体模态频率达到最大值的车体侧墙高度、车窗位置和边梁厚度.结果表明,在原承载结构基础上动车侧墙高度降低50mm、车窗距地板的高度降低50mm、边梁厚度不变时车体模态频率最大;在原承载结构基础上拖车侧墙高度和车窗距地板的高度保持不变,边梁厚...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号