共查询到19条相似文献,搜索用时 55 毫秒
1.
以提高径向基函数神经网络(radial basis function neural network,RBFNN)的分类能力为出发点,把衰减半径聚类的思想与误差平方和准则结合起来,提出了RBFNN三阶段学习算法。该算法先利用动态衰减半径聚类确定隐节点的初始结构,再由误差平方和准则进行中心点微调,并用类内类间距确定径基宽度,最后采用伪逆法训练隐层与输出层间的连接权重。给出了算法的具体步骤,并通过Iris和WINES数据集的仿真实验,证明该算法确实具有较强的分类能力。 相似文献
2.
径向基函数神经网络的遥感图象分类 总被引:1,自引:0,他引:1
针对遥感图象分类的特点,提出了一种径向基函数神经网络的遥感图象分类器。实验结果表明,这种径向基函数神经网络分类器经过训练后,可应用于遥感图象的分类。通过与BP经网络分类器相比较,径向基函数神经网络分类器在学习速度和分类精度等方面具有一定的优势。 相似文献
3.
基于小波变换和神经网络的水下宽带回波分类 总被引:2,自引:0,他引:2
目标识别是水下信息处理系统的主要任务之一,针对此问题,从目标识别的三个基本环节研究了水下宽带回波的分类。首先基于连续小波变换提取了实测莱蒙湖底回波的尺度———小波能量谱,以径向基函数作为分类器,得到了很好的分类效果。接着给出了三种选择特征的准则,并研究了这三种准则对分类效果的影响,结果表明,这三种方法都可以在保证分类准确度的同时有效降低特征维数。 相似文献
4.
5.
一种新的RBF神经网络非线性动态系统建模方法 总被引:4,自引:0,他引:4
将遗传算法与正交优选法结合 ,用来训练径向基函数 ( RBF)神经网络 ,并对基函数宽度进行自动地调整 ,得到了一种训练 RBF神经网络的新方法 .将其应用于连续流体搅拌反应槽 ( CFSTR)生化反应器的建模中 ,得到了令人满意的结果 .该算法提高了径向基函数神经网络的泛化能力和鲁棒性 ,研究表明是一种有效的“黑箱”动态建模方法 相似文献
6.
径向基函数网络泛化能力研究及其应用 总被引:2,自引:0,他引:2
通过分析径向基函数网络(RBF网络)结构及影响其泛化能力的因素,提出一种通过网络泛化误差自动调节隐层节点数以得到最佳节点数的方法。将采用这种算法的RBF网络用于对船舶焊接变形过程进行建模并预测其输出。仿真表明这种算法可以显著提高传统RBF网络的泛化能力。 相似文献
7.
基于RBF网络的模糊if-then规则快速提取 总被引:1,自引:0,他引:1
提出了一种基于径向基函数神经网络(RBF网络)的模糊规则提取的新方法。该方法快速、有效且提取的规则清晰。得到的模糊神经网络可用于非线性系统的逼近。 相似文献
8.
提出了一种将递阶遗传算法和奇异值分解的优点相结合的新型径向基神经网络学习算法--混合递阶遗传算法。它具有较高的学习效率,并能同时确定径向基神经网络的结构和参数。利用所提出的混合递阶遗传算法对混沌时间序列学习和预测,取得了较好的效果。 相似文献
9.
10.
11.
常规的分类与回归树算法(classification and regression tree,CART)只能通过重新训练来增加对新类别的认知,导致样本类别数量较多时训练成本大幅增加.针对这一问题,提出一种轻量化的增量式集成学习算法:当新的类别进入到训练集中,只需在原有集成学习算法中添加具有开集识别能力的CART基分类器... 相似文献
12.
在数据挖掘研究领域,分类任务广泛存在着数据分布不均衡问题,例如制造状态检测,医疗诊断,金融服务,等等.SMOTE是处理不均衡数据分类问题的常用技术,与Boosting算法相结合可进一步提升分类系统性能,但是这种集成学习容易导致基分类器多样性缺失.基于此,本文提出了一种基于高斯过程SMOTE过采样的Boosting集成学习算法(Gaussian-based smote in boosting,GSMOTEBoost).该算法在Boosting集成框架下构建不均衡学习模型,为了提高分类系统的鲁棒性,采用基于高斯过程SMOTE过采样技术来增加基分类器训练样本的多样性,从而提高基分类器之间的差异.为了验证算法的有效性,以常用的处理不均衡分类问题的算法作为对比方法,采用KEEL数据库里的20个标准数据集对算法进行测试,以G-mean,F-measure以及AUC作为算法的评价指标,利用统计检验手段对实验结果进行分析.实验结果表明,相对于其他算法,本文提出的GSMOTEBoost具有显著的优势. 相似文献
13.
随着我国各级政府大力推动垃圾强制分类,分类回收各环节中实现标准化、自动化的垃圾分类识别需要适合云端部署的高准确率、低延时要求的细粒度图像分类模型.本文发挥深度迁移学习的优势建立了一套端到端的迁移学习网络架构GANet (garbage neural network);针对垃圾分类中类别易混淆、背景干扰等挑战,提出一种新型的像素级空间注意力机制PSATT (pixel-level spatial attention).为克服类别多和样本不平衡挑战,提出使用标签平滑正则化损失函数;为改善收敛速度以及模型稳定性与泛化性,提出了阶梯形OneCycle学习率控制方法,并给出了结合Rectified Adam (RAdam)优化方法和权重平滑处理技术的组合使用策略.实验使用了"华为云人工智能大赛.垃圾分类挑战杯"提供的按照深圳市垃圾分类标准标注的训练数据,验证了GANet在垃圾分类问题中的显著效果,获得了全国二等奖(第2名);同时,提出的PSATT机制优于对比方法,且在不同主干网络架构上均得到了提升,具有良好的通用性.本文提出的GANet架构、PSATT机制和训练策略不仅具有重要的工程参考价值,也具有较好的学术价值. 相似文献
14.
针对多类别不均衡数据的分类问题,从数据集的特征选择和集成学习两个角度出发,提出了一种新的针对不均衡数据的分类方法—BPSO-Adaboost-KNN算法,算法采用基于多分类问题的可视化的AUCarea作为分类评价指标.为了测试算法的性能,本文选取了10组UCI和KEEL选取的测试数据集进行测试,结果表明本算法在有效提取关键特征后提高了Adaboost的稳定性,在十组数据的分类精度上相比单纯使用KNN分类器有20%~40%不等的提高.在本算法和其他state-of-the-art集成分类算法对比中,BPSO-Adaboost-KNN能够取得较优或相当的结果.最后,本文将该算法应用到石油储层含油性的识别中,成功提取了声波、孔隙度和含油饱和度三个关键属性,在分类精度上相比传统分类算法有了大幅度提高,在江汉油田五口油井oilsk81~oilsk85上的分类精度均达到98%以上,比单纯使用KNN的精度高出了20%,尤其在最易错分的油层和差油层中有良好的分类效果. 相似文献
15.
针对目前合成孔径雷达(synthetic aperture radar,SAR)在对大尺度瞬时海岸线提取方面的图像解译过程中,仍然存在精度低与自动化水平差的问题,提出一种基于深度学习网络的瞬时海岸线自动提取算法.首先,将SAR图像进行Lee滤波增强来抑制相干斑.其次,通过升级残差网络为主干网络,分4级提取海水目标的特征... 相似文献
16.
在分析了Kohonen自组织特征映射网络(SOFM)和学习矢量量化(LVQ)算法的基础上,提出一种基于改进的SOFM算法和LVQ2算法的混合学习矢量量化(HLVQ)方法,并建立了基于HLVQ的遥感影像非监督和监督分类的一般模型。通过与传统的统计分类方法和LVQ2网络分类器比较,HLVQ分类器总的分类性能更好、识别率更高。 相似文献
17.
A globally optimal solution to vector quantization (VQ) index assignment on noisy channel, the evolutionary algorithm based index assignment algorithm (EAIAA), is presented. The algorithm yields a significant reduction in average distortion due to channel errors, over conventional arbitrary index assignment, as confirmed by experimental results over the memoryless binary symmetric channel (BSC) for any bit error. 相似文献
18.
为了有效提高干涉多光谱图像压缩效率,以满足星上应用环境要求,提出了一种新的遥感干涉多光谱图像压缩算法.采用小波域匹配预处理来去除干涉光谱图像序列的帧间相关性,采用基于率失真斜率提升的感兴趣区域编码方法,对图像不同区域进行更合理的码率分配,反馈控制T1编码器的编码深度,调整编码子带个数,从而减少编码计算量和存储器使用量,便于硬件实现.实验结果表明,该算法能有效提高恢复光谱的分辨率,简化系统复杂度. 相似文献
19.
基于多输入多输出(MIMO)天线和正交频分多路复用(OFDM),提出了空时频分组编码方法,发射端的编码和接收端的解码都不需要信道状态信息(CSI)。利用广义似然比检验(GLRT)解码算法,导出了成对符号错误概率(PEP)上限和码的设计准则。分析表明,在频率选择性MIMO信道中,这种码能充分利用空间分集和频率分集,而且只有较低的编解码复杂性。仿真结果证实,在频率选择性MIMO信道中,提出的非相干空时频码相对空时分组码性能有很大提高。 相似文献