首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whaley SR  English DS  Hu EL  Barbara PF  Belcher AM 《Nature》2000,405(6787):665-668
In biological systems, organic molecules exert a remarkable level of control over the nucleation and mineral phase of inorganic materials such as calcium carbonate and silica, and over the assembly of crystallites and other nanoscale building blocks into complex structures required for biological function. This ability to direct the assembly of nanoscale components into controlled and sophisticated structures has motivated intense efforts to develop assembly methods that mimic or exploit the recognition capabilities and interactions found in biological systems. Of particular value would be methods that could be applied to materials with interesting electronic or optical properties, but natural evolution has not selected for interactions between biomolecules and such materials. However, peptides with limited selectivity for binding to metal surfaces and metal oxide surfaces have been successfully selected. Here we extend this approach and show that combinatorial phage-display libraries can be used to evolve peptides that bind to a range of semiconductor surfaces with high specificity, depending on the crystallographic orientation and composition of the structurally similar materials we have used. As electronic devices contain structurally related materials in close proximity, such peptides may find use for the controlled placement and assembly of a variety of practically important materials, thus broadening the scope for 'bottom-up' fabrication approaches.  相似文献   

2.
Ion-beam sculpting at nanometre length scales.   总被引:8,自引:0,他引:8  
J Li  D Stein  C McMullan  D Branton  M J Aziz  J A Golovchenko 《Nature》2001,412(6843):166-169
Manipulating matter at the nanometre scale is important for many electronic, chemical and biological advances, but present solid-state fabrication methods do not reproducibly achieve dimensional control at the nanometre scale. Here we report a means of fashioning matter at these dimensions that uses low-energy ion beams and reveals surprising atomic transport phenomena that occur in a variety of materials and geometries. The method is implemented in a feedback-controlled sputtering system that provides fine control over ion beam exposure and sample temperature. We call the method "ion-beam sculpting", and apply it to the problem of fabricating a molecular-scale hole, or nanopore, in a thin insulating solid-state membrane. Such pores can serve to localize molecular-scale electrical junctions and switches and function as masks to create other small-scale structures. Nanopores also function as membrane channels in all living systems, where they serve as extremely sensitive electro-mechanical devices that regulate electric potential, ionic flow, and molecular transport across cellular membranes. We show that ion-beam sculpting can be used to fashion an analogous solid-state device: a robust electronic detector consisting of a single nanopore in a Si3N4 membrane, capable of registering single DNA molecules in aqueous solution.  相似文献   

3.
Milliron DJ  Hughes SM  Cui Y  Manna L  Li J  Wang LW  Alivisatos AP 《Nature》2004,430(6996):190-195
The development of colloidal quantum dots has led to practical applications of quantum confinement, such as in solution-processed solar cells, lasers and as biological labels. Further scientific and technological advances should be achievable if these colloidal quantum systems could be electronically coupled in a general way. For example, this was the case when it became possible to couple solid-state embedded quantum dots into quantum dot molecules. Similarly, the preparation of nanowires with linear alternating compositions--another form of coupled quantum dots--has led to the rapid development of single-nanowire light-emitting diodes and single-electron transistors. Current strategies to connect colloidal quantum dots use organic coupling agents, which suffer from limited control over coupling parameters and over the geometry and complexity of assemblies. Here we demonstrate a general approach for fabricating inorganically coupled colloidal quantum dots and rods, connected epitaxially at branched and linear junctions within single nanocrystals. We achieve control over branching and composition throughout the growth of nanocrystal heterostructures to independently tune the properties of each component and the nature of their interactions. Distinct dots and rods are coupled through potential barriers of tuneable height and width, and arranged in three-dimensional space at well-defined angles and distances. Such control allows investigation of potential applications ranging from quantum information processing to artificial photosynthesis.  相似文献   

4.
Regal CA  Ticknor C  Bohn JL  Jin DS 《Nature》2003,424(6944):47-50
Following the realization of Bose-Einstein condensates in atomic gases, an experimental challenge is the production of molecular gases in the quantum regime. A promising approach is to create the molecular gas directly from an ultracold atomic gas; for example, bosonic atoms in a Bose-Einstein condensate have been coupled to electronic ground-state molecules through photoassociation or a magnetic field Feshbach resonance. The availability of atomic Fermi gases offers the prospect of coupling fermionic atoms to bosonic molecules, thus altering the quantum statistics of the system. Such a coupling would be closely related to the pairing mechanism in a fermionic superfluid, predicted to occur near a Feshbach resonance. Here we report the creation and quantitative characterization of ultracold 40K2 molecules. Starting with a quantum degenerate Fermi gas of atoms at a temperature of less than 150 nK, we scan the system over a Feshbach resonance to create adiabatically more than 250,000 trapped molecules; these can be converted back to atoms by reversing the scan. The small binding energy of the molecules is controlled by detuning the magnetic field away from the Feshbach resonance, and can be varied over a wide range. We directly detect these weakly bound molecules through their radio-frequency photodissociation spectra; these probe the molecular wavefunction, and yield binding energies that are consistent with theory.  相似文献   

5.
6.
Photoluminescence blinking--random switching between states of high (ON) and low (OFF) emissivities--is a universal property of molecular emitters found in dyes, polymers, biological molecules and artificial nanostructures such as nanocrystal quantum dots, carbon nanotubes and nanowires. For the past 15 years, colloidal nanocrystals have been used as a model system to study this phenomenon. The occurrence of OFF periods in nanocrystal emission has been commonly attributed to the presence of an additional charge, which leads to photoluminescence quenching by non-radiative recombination (the Auger mechanism). However, this 'charging' model was recently challenged in several reports. Here we report time-resolved photoluminescence studies of individual nanocrystal quantum dots performed while electrochemically controlling the degree of their charging, with the goal of clarifying the role of charging in blinking. We find that two distinct types of blinking are possible: conventional (A-type) blinking due to charging and discharging of the nanocrystal core, in which lower photoluminescence intensities correlate with shorter photoluminescence lifetimes; and a second sort (B-type), in which large changes in the emission intensity are not accompanied by significant changes in emission dynamics. We attribute B-type blinking to charge fluctuations in the electron-accepting surface sites. When unoccupied, these sites intercept 'hot' electrons before they relax into emitting core states. Both blinking mechanisms can be electrochemically controlled and completely suppressed by application of an appropriate potential.  相似文献   

7.
Optimization for the technological processes of fabricating oligonucleotide microarray by the molecular stamping method is studied in this note. Three factors that affect the pressing coupling reactions of the nucleosides are focused on: the stability of the chemical activities of the reaction solutions, the contamination of the remain of the reactive nucleotides among the different spots on the chip, and the influence of the capping reaction on the hybridization result. The experiments show that the acetonitrile solution of tetrazole and nucleoside monomer could maintain sufficient reactive activity for more than 10 h. An effective method has been used and proved to eliminate the residual reactive nucleosides on chip with small molecules containing hydroxyl group. Finally, the capping step—a regular step in the conventional DNA chemical synthesis can be neglected in our on-chip DNA synthetic process, which would not affect its hybridization results.  相似文献   

8.
Optimization for the technological processes of fabricating oligonucleotide microarray by the molecular stamping method is studied in this note. Three factors that affect the pressing coupling reactions of the nucleosides are focused on: the stability of the chemical activities of the reaction solutions, the contamination of the remain of the reactive nucleotides among the different spots on the chip, and the influence of the capping reaction on the hybridization result. The experiments show that the acetonitrile solution of tetrazole and nucleoside monomer could maintain sufficient reactive activity for more than 10 h. An effective method has been used and proved to eliminate the residual reactive nucleosides on chip with small molecules containing hydroxyl group. Finally, the capping step-- a regular step in the conventional DNA chemical synthesis can be neglected in our on-chip DNA synthetic process, which would not affect its hybridization results.  相似文献   

9.
A robust DNA mechanical device controlled by hybridization topology.   总被引:15,自引:0,他引:15  
Controlled mechanical movement in molecular-scale devices has been realized in a variety of systems-catenanes and rotaxanes, chiroptical molecular switches, molecular ratchets and DNA-by exploiting conformational changes triggered by changes in redox potential or temperature, reversible binding of small molecules or ions, or irradiation. The incorporation of such devices into arrays could in principle lead to complex structural states suitable for nanorobotic applications, provided that individual devices can be addressed separately. But because the triggers commonly used tend to act equally on all the devices that are present, they will need to be localized very tightly. This could be readily achieved with devices that are controlled individually by separate and device-specific reagents. A trigger mechanism that allows such specific control is the reversible binding of DNA strands, thereby 'fuelling' conformational changes in a DNA machine. Here we improve upon the initial prototype system that uses this mechanism but generates by-products, by demonstrating a robust sequence-dependent rotary DNA device operating in a four-step cycle. We show that DNA strands control and fuel our device cycle by inducing the interconversion between two robust topological motifs, paranemic crossover (PX) DNA and its topoisomer JX2 DNA, in which one strand end is rotated relative to the other by 180 degrees. We expect that a wide range of analogous yet distinct rotary devices can be created by changing the control strands and the device sequences to which they bind.  相似文献   

10.
Images of single-stranded nucleic acids by scanning tunnelling microscopy   总被引:5,自引:0,他引:5  
D D Dunlap  C Bustamante 《Nature》1989,342(6246):204-206
The scanning tunnelling microscope has the potential to resolve the structure of biological molecules with atomic detail. Progress has been made in the imaging of dried, unshadowed double helices of DNA4-7 and in recording images of DNA under water. Also, images of unshadowed complexes of DNA with the RecA protein from Escherichia coli indicate that this technique may not be restricted to thin biological samples. Here we present images of polydeoxyadenylate molecules aligned in parallel, with their bases lying flat on a surface of highly oriented pyrolytic graphite and with their charged phosphodiester backbones protruding upwards. Based on these images, a molecular model has been built which suggests the presence of a hydrogen bond that could stabilize the parallel alignment. Our micrographs demonstrate the potential application of scanning tunnelling microscopy in structural studies of nucleic acids and provide evidence that it could be used to sequence DNA.  相似文献   

11.
Kodera N  Yamamoto D  Ishikawa R  Ando T 《Nature》2010,468(7320):72-76
The dynamic behaviour of myosin V molecules translocating along actin filaments has been mainly studied by optical microscopy. The processive hand-over-hand movement coupled with hydrolysis of adenosine triphosphate was thereby demonstrated. However, the protein molecules themselves are invisible in the observations and have therefore been visualized by electron microscopy in the stationary states. The concomitant assessment of structure and dynamics has been unfeasible, a situation prevailing throughout biological research. Here we directly visualize myosin V molecules walking along actin tracks, using high-speed atomic force microscopy. The high-resolution movies not only provide corroborative 'visual evidence' for previously speculated or demonstrated molecular behaviours, including lever-arm swing, but also reveal more detailed behaviours of the molecules, leading to a comprehensive understanding of the motor mechanism. Our direct and dynamic high-resolution visualization is a powerful new approach to studying the structure and dynamics of biomolecules in action.  相似文献   

12.
Noble metal nanoparticles, such as gold or silver nanoparticles and nanorods, exhibit unique photonic, electronic and catalytic properties. Functionalization of noble metal nanoparticles with biomolecules (e.g., protein and DNA) produces systems that possess numerous applications in catalysis, delivery, therapy, imaging, sensing, constructing nanostructures and controlling the structure of biomolecules. In this paper, the recent development of noble metal nanoparticle-biomolecule conjugates is reviewed from the following three aspects: (1) synthesis of noble metal nanoparticle-biomolecule systems by electrostatic adsorption, direct chemisorption of thiol derivatives, covalent binding through bifunctional linkers and specific affinity interactions; (2) the photonic properties and bioactivation of noble metal nanoparticle-biomolecule conjugates; and (3) the optical applications of such systems in biosensors, and medical imaging, diagnosis, and therapy. The conjugation of Au and Ag nanoparticles with biomolecules and the most recent optical applications of the resulting systems have been focused on.  相似文献   

13.
Electrical transport through molecules has been much studied since it was proposed that individual molecules might behave like basic electronic devices, and intriguing single-molecule electronic effects have been demonstrated. But because transport properties are sensitive to structural variations on the atomic scale, further progress calls for detailed knowledge of how the functional properties of molecules depend on structural features. The characterization of two-terminal structures has become increasingly robust and reproducible, and for some systems detailed structural characterization of molecules on electrodes or insulators is available. Here we present scanning tunnelling microscopy observations and classical electrostatic and quantum mechanical modelling results that show that the electrostatic field emanating from a fixed point charge regulates the conductivity of nearby substrate-bound molecules. We find that the onset of molecular conduction is shifted by changing the charge state of a silicon surface atom, or by varying the spatial relationship between the molecule and that charged centre. Because the shifting results in conductivity changes of substantial magnitude, these effects are easily observed at room temperature.  相似文献   

14.
本文以双原子分子C_2,CN,N_2,NO,O_2和F_2为例,讨论了分子电子结构和形状共振中的原子轨道杂化效应,我们根据多重散射自恰场理论方法,具体计算了这些分子的电子结构,以及其fσ通道的形状共振能量,展示了原子轨道杂化效应。本文还讨论了形状共振能量随原子核间距的变化规律,发现共振动能和核间距的平方成反比。  相似文献   

15.
DNA计算是一种基于生化反应机理的新型信息处理模式,与基于图灵机思想的电子计算机原理截然不同。近年来,DNA分子生物计算理论、实验技术的快速发展为DNA计算机的实现技术提供了一种新的理论和手段。文章首次尝试了DNA计算在逻辑演算中的应用,拓宽了DNA计算的应用领域。模型的最大优点是反应物可以在溶液中充分混合接触而进行生化反应,充分体现了DNA计算巨大并行性的优点,另外编码数和操作数都是线性增加的。  相似文献   

16.
Programmable and autonomous computing machine made of biomolecules.   总被引:42,自引:0,他引:42  
Y Benenson  T Paz-Elizur  R Adar  E Keinan  Z Livneh  E Shapiro 《Nature》2001,414(6862):430-434
Devices that convert information from one form into another according to a definite procedure are known as automata. One such hypothetical device is the universal Turing machine, which stimulated work leading to the development of modern computers. The Turing machine and its special cases, including finite automata, operate by scanning a data tape, whose striking analogy to information-encoding biopolymers inspired several designs for molecular DNA computers. Laboratory-scale computing using DNA and human-assisted protocols has been demonstrated, but the realization of computing devices operating autonomously on the molecular scale remains rare. Here we describe a programmable finite automaton comprising DNA and DNA-manipulating enzymes that solves computational problems autonomously. The automaton's hardware consists of a restriction nuclease and ligase, the software and input are encoded by double-stranded DNA, and programming amounts to choosing appropriate software molecules. Upon mixing solutions containing these components, the automaton processes the input molecule via a cascade of restriction, hybridization and ligation cycles, producing a detectable output molecule that encodes the automaton's final state, and thus the computational result. In our implementation 1012 automata sharing the same software run independently and in parallel on inputs (which could, in principle, be distinct) in 120 microl solution at room temperature at a combined rate of 109 transitions per second with a transition fidelity greater than 99.8%, consuming less than 10-10 W.  相似文献   

17.
Atom-molecule coherence in a Bose-Einstein condensate   总被引:2,自引:0,他引:2  
Donley EA  Claussen NR  Thompson ST  Wieman CE 《Nature》2002,417(6888):529-533
Recent advances in the precise control of ultracold atomic systems have led to the realisation of Bose Einstein condensates (BECs) and degenerate Fermi gases. An important challenge is to extend this level of control to more complicated molecular systems. One route for producing ultracold molecules is to form them from the atoms in a BEC. For example, a two-photon stimulated Raman transition in a (87)Rb BEC has been used to produce (87)Rb(2) molecules in a single rotational-vibrational state, and ultracold molecules have also been formed through photoassociation of a sodium BEC. Although the coherence properties of such systems have not hitherto been probed, the prospect of creating a superposition of atomic and molecular condensates has initiated much theoretical work. Here we make use of a time-varying magnetic field near a Feshbach resonance to produce coherent coupling between atoms and molecules in a (85)Rb BEC. A mixture of atomic and molecular states is created and probed by sudden changes in the magnetic field, which lead to oscillations in the number of atoms that remain in the condensate. The oscillation frequency, measured over a large range of magnetic fields, is in excellent agreement with the theoretical molecular binding energy, indicating that we have created a quantum superposition of atoms and diatomic molecules two chemically different species.  相似文献   

18.
Electrical conduction through DNA molecules   总被引:23,自引:0,他引:23  
Fink HW  Schönenberger C 《Nature》1999,398(6726):407-410
The question of whether DNA is able to transport electrons has attracted much interest, particularly as this ability may play a role as a repair mechanism after radiation damage to the DNA helix. Experiments addressing DNA conductivity have involved a large number of DNA strands doped with intercalated donor and acceptor molecules, and the conductivity has been assessed from electron transfer rates as a function of the distance between the donor and acceptor sites. But the experimental results remain contradictory, as do theoretical predictions. Here we report direct measurements of electrical current as a function of the potential applied across a few DNA molecules associated into single ropes at least 600 nm long, which indicate efficient conduction through the ropes. We find that the resistivity values derived from these measurements are comparable to those of conducting polymers, and indicate that DNA transports electrical current as efficiently as a good semiconductor. This property, and the fact that DNA molecules of specific composition ranging in length from just a few nucleotides to chains several tens of micrometres long can be routinely prepared, makes DNA ideally suited for the construction of mesoscopic electronic devices.  相似文献   

19.
Liquid crystals (LCs) are often known as electronic displays and have become ubiquitous in our daily life, apart from that, in the past 10 years, LCs have been investigated as exquisitely sensitive reporters for developing new molecular sensing and detection tools. The unique and primary advantage of this class of intriguing materials is the perturbation of the local ordering LCs at mo-lecular scale by bio/chemical species can be communicated within LC molecules and extended over microns, allowing the observation of the optical signals by microscope or even the naked eye. Therefore, it provides a new platform for developing bio/chemical detection and potentially label-free sensing systems.  相似文献   

20.
The postgenomic era has seen an emergence of new applications of DNA manipulation technologies, including DNA-based molecular computing. Surface DNA computing has already been reported in a number of studies that,however, all employ different mechanisms other than automaton functions. Here we describe a programmable DNA surface-computing device as a Turing machine-like finite automaton. The laboratory automaton is primarily composed of DNA (inputs, output-detectors, transition molecules as software), DNA manipulating enzymes and buffer system that solve artificial computational problems autonomously. When fluoresceins were labeled in the 5‘ end of (-) strand of the input molecule, direct observation of all reaction intermediates along the time scale was made so that the dynamic process of DNA computing could be conveniently visualized. The features of this study are: (i) achievement of finite automaton functions by linearly programmed DNA computer operated on magnetic particle surface and (ii)direct detection of all DNA computing intermediates by capiilary electrophoresis. Since DNA computing has the massive parallelism and feasibility for automation, this achievement sets a basis for large-scale implications of DNA computing for functional genomics in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号