首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
以三聚氰胺甲醛树脂和硝酸钴为前驱体,在Ar保护下采用高温碳化方法制备用于直接甲醇燃料电池(DMFC)阴极的含氮碳载钴(Co-N-C)氧还原电催化剂.利用热重与红外光谱联用、X射线衍射分析、元素分析等方法表征了催化剂的制备过程和结构,采用旋转圆盘电极测试考察了不同碳化温度对Co-N-C电催化剂氧还原催化活性的影响及电催化剂的耐醇性能,并采用该催化剂为阴极催化剂进行DMFC单电池测试.结果表明:Co-N-C电催化剂具有较高的电催化活性和较好的耐醇性能;其氧还原起始电位在0.5V(vs.SCE)左右;700℃碳化温度下制备的Co-N-C电催化剂具有最高的氧还原催化活性.  相似文献   

2.
采用合成后未经提纯的粗卟啉、Co(OH)2和碳粉制备卟啉钴用于质子交换膜燃料电池阴极氧还原反应电催化剂.研究了试样组成和热处理温度等制备条件对催化性能的影响.采用薄层电板结合循环伏安法和单体燃料电池I-V特性评价了所制备的电催化剂对氧还原反应的催化活性.  相似文献   

3.
为构筑出一种新的辣根过氧化物酶(HRP)第三代电化学生物传感器并将其用于H_2O_2的有效检测,采用循环伏安法将滴涂于玻碳电极(GCE)表面的壳聚糖(CS)-氧化石墨烯(GO)复合膜一步还原成壳聚糖(CS)-电化学还原氧化石墨烯(ErGO)复合膜,然后结合一层CS-辣根过氧化物酶(HRP)复合物,制备出CS-HRP/CS-ErGO/GCE,其中内层CS用于吸附HRP,外层CS用于阻止HRP泄漏。利用复合膜中Er GO良好的导电性和电催化性能,实现HRP与电极表面的直接电子转移。此外,CS/CS-ErGO还为HRP提供一个生物相容性微环境,使得修饰在电极上的HRP能保持其生物活性。结果表明:该修饰电极在空白磷酸盐缓冲液(PBS)溶液中出现一对氧化还原峰,式量电位为-0.11 V(vs.Ag/Ag Cl),说明包埋在CS/CS-ErGO膜中的HRP与玻碳电极之间发生了直接电化学行为。此外,该修饰电极对H_2O_2的还原具有电催化作用,能快速、灵敏地响应H_2O_2的浓度变化,其线性范围为1.0×10~(-5)~7.0×10~(-4)mol/L,检测限为3.0×10~(-6)mol/L(3S/N)。该传感器具有制备方法简单、成本低廉且稳定性良好的特点。  相似文献   

4.
HRP的电化学固定化及HRP/P—OPD酶电极的性能   总被引:1,自引:0,他引:1  
利用电化学固定化方法制备含辣根过氧化物酶的聚邻苯二胺(HRP/P-OPD)膜电极,改变聚合用溶液的酸度和所含支持电解质的成分,研究酶的固定化过程及其对所得酶电极性能的影响.结果表明依电聚合条件而异,酶可能以不同途径进入聚合物基质中.支持电解质的品种会影响酶膜的形成速度、组成和稳定性.所得HRP/P-OPD膜电极可在溶液不含电子传递体的条件下催化H2O2的还原,电聚合过程中进入酶膜的寡聚体可能充当酶的电子传递体  相似文献   

5.
运用Hamiltonian PM3算法,计算了36种卤代芳烃化合物的26个量子化学参数,在此基础上通过偏最小二乘法得到了卤代芳烃化合物在缺氟沉积物中还原脱卤速率的QSPR模型.该模型可用于解释卤代芳烃化合物还原脱卤的机理.结果表明,卤代芳烃化合物中整个分子的最负的原子净电荷(q^-)、键序最小的碳卤键中碳原子的单中心项电子—核吸引能(ENC)、该碳—卤键上碳原子的净电荷(qc)、分子最低未占据轨道能(EIumo)值越大,该卤代芳烃化合物还原脱卤的速率常数越小;而前线轨道间隙能(△E)、键序最小的碳卤键中碳原子的单中心项电子—电子推斥能(EEC)、相对分子质量(Mr)、整个分子的最正的原子净电荷(q^ )、平均分子极化率(α)值越大,该卤代芳烃化合物还原脱卤的速率常数越大.  相似文献   

6.
用海藻酸钠(Sodium Alginate,SA)将肌红蛋白(Mb)固定在热裂解石墨电极表面,制备了Mb.SA膜修饰电极.包埋在SA膜中的Mb在磷酸盐缓冲溶液(PBS)和乙醇混合溶液中与电极直接传递电子,得到一对对称的Mb辅基血红素Fe(Ⅲ)/Fe(Ⅱ)电对的氧化还原峰,式电势为-0.339V(vs SCE).式电势随PBSpH值增加而负移且成线性关系,直线斜率为-47.0mV/pH,说明肌红蛋白的电子传递过程伴随有质子的转移.并研究了Mb-SA膜修饰电极在PBS和乙醇混合溶液中催化还原H2O2和催化六氯乙烷脱氯,该修饰电极可用于H2O2和六氯乙烷的定量检测.  相似文献   

7.
用甲基纤维素(MC)将肌红蛋白(Mb)固载于热裂解石墨电极表面,制备了Mb-MC膜修饰电极.修饰膜中的Mb与电极直接传递电子,在磷酸盐缓冲溶液(PBS)中循环伏安扫描可得到一对可逆的Mb辅基血红素Fe(Ⅲ)/Fe(Ⅱ)电对氧化还原峰,式电势为-0.298V(vs SCE).式电势随PBS的pH值增加而负移且成线性关系,说明Mb的电子传递过程伴随有质子的转移,最后探讨了该修饰电极对O2,H2O2和NO的电催化性质。  相似文献   

8.
用循环伏安法研究了Cu(Ⅱ)-胺配合物的电还原性质,实验结果表明:铜胺配合物可以键合O2,并催化O2的还原。Cu(Ⅱ)也能与1,1′-联-2-萘酚配合,但是配合物不能键合O2,不能催化O2的还原。所以铜胺配合物键合并活化了O2,具有模拟酶的特征。  相似文献   

9.
改进了用于垸基苯酚加氢制备烷基环己醇(酮)的Pd/C催化剂的制备方法,考察了影响催化剂活性的主要因素,研究了Pd/C催化刺的再生方法.结果表明,以大孔径活性炭为载体,活性组分和助剂用浸渍法负载,以K2CO3为水解沉淀剂,HCHO和CH3OH混合溶液为还原剂,液相还原,水解还原一步进行,可以制备出高活性的用于烷基苯酚加氢制烷基环已醇(酮)的Pd/C催化剂;失活的Pd/C催化剂经乙酸处理,二氧化碳吹扫.氢气还原,可恢复原催化剂活性的77%.  相似文献   

10.
根据热力学平衡理论及实验观测结果,探讨了铜电积过程中砷的电化学行为.得知:在采用不溶性阳极电积脱铜脱砷传统工艺流程中,砷酸在阴极发生还原反应形成亚砷酸,亚砷酸又与阳极产生的氧气发生氧化反应形成砷酸.在铜含量较低时阴极析出大量氢气,阳极析出氧气,极大地浪费了电能;在析出氢气的同时逸出砷化氢,砷酸、亚砷酸在阴极直接发生还原反应也产生砷化氢气体,从而严重地污染了环境.  相似文献   

11.
Two typical and important copper-containing enzymes, laccase (Lac)and tyrosinase (Tyr), have been immobilized on the surface of active carbon with simple adsorption method. The cyclic voltammetric results indicated that the active carbon could promote the direct electron transfer of both Lac and Tyr and a pair of well-defined and nearly symmetric redox peaks appeared on the cyclic voltammograms of Lac or Tyr with the formal potential, E^0‘,independent on the scan rate. The further experimental results showed that the immobilized copper-containing oxidase displayed an excellent electrocatalytic activity to the electrochemical reduction of 02. The immobilization method presented here has several advantages, such as simplicity, easy to operation and keeping good activity of enzyme etc., and could be further used to study the direct electrochemistry of other redox proteins and enzymes and fabricate the catalysts for biofuel cell.  相似文献   

12.
以α-酮戊二酸接枝壳聚糖和纳米金溶胶共混所得复合物为固定漆酶的载体,将固酶复合物滴涂在裸玻碳电极表面干燥后,得到固定漆酶基阴极。文章考察了此电极在不含底物的电解质溶液中的直接电化学行为,同时还考察了其在扩散型电子中介体存在时的异相电子迁移动力学,同时研究了此电极对氧气还原反应的催化性能(中介体存在时)。在此基础上进一步考察了此电极作为氧气电化学传感器的性能。研究结果表明:α-酮戊二酸接枝壳聚糖一纳米金溶胶复合物固定漆酶修饰电极在无电子中介体时不能实现漆酶活性中心与电极之间的直接电子迁移,也不具备催化氧还原的性能。在扩散型电子中介体存在时,该电极能在较高的电位(催化氧还原的起始电位:790mV)下实现氧气的电还原,而且对氧气浓度较为敏感。这种漆酶基电极的在生理pH值时仍具有一定的催化活力。这种电极对氧的传感性能良好:检测限低达0.5×10-6mol/L、灵敏度高达35.6×10-6AL/mmol和良好的对氧亲和力(KM=89.9×10mol/L)。  相似文献   

13.
使用葡萄糖糖氧化酶(GOD)和漆酶(Lac)分别做酶生物燃料电池的阳极与阴极,构成了GOD/Lac酶生物燃料电池.首先通过循环伏安法研究了酶生物燃料电池阳极催化剂GOD和阴极催化剂Lac在碳布基底电极上的直接电化学行为,结果表明:GOD与Lac在该修饰电极上均完成了一个直接、可逆的电化学过程,保持了自身的生物学活性,为成功构成GOD/Lac酶生物燃料电池提供一个必要条件.其二,采用葡萄糖作为GOD/Lac酶生物燃料电池的阳极燃料,氧气(O2)作为GOD/Lac酶生物燃料电池的阴极燃料,使用充放电仪测得该GOD/Lac酶生物燃料电池在38.5 mV处的最大输出功率密度为0.108μW·cm-2,电流密度为2.75uμA·cm-2.  相似文献   

14.
采用电化学还原法在玻碳电极上直接制备了石墨烯/亚甲基蓝(GR/MB)﹑石墨烯/纳米纤维素(GR/NCC)﹑石墨烯/纳米纤维素/亚甲基蓝(GR/NCC/MB)修饰电极,研究了不同修饰电极的循环伏安行为.研究表明:相比GR/MB电极,GR/NCC/MB修饰电极对亚甲基蓝的电化学活性要高,氧化还原峰电流值可达4~5倍.其扫速的平方根与峰电流成线性关系.当石墨烯与纳米纤维素的质量比达到1.00∶4.60到1.00∶5.75时电化学活性最高.纳米纤维素和电化学还原的石墨烯通过协同作用增加亚甲基蓝的吸附能力,从而使GR/NCC/MB修饰电极表现出优异的电化学性能.  相似文献   

15.
利用恒电位沉积方法将HAuCl4直接还原成纳米金并沉积到玻碳电极表面。制备了对苯二酚异构体具有不同电催化作用纳米金修饰电极。在PBS缓冲溶液中,通过循环伏安法研究了苯二酚异构体及其混合物在纳米金修饰电极上的电化学行为,结果表明。苯二酚异构体在纳米金修饰电极上具有不同的电化学性质。对苯二酚和邻苯二酚在纳米金修饰电极上出现峰型良好的氧化还原峰,而间苯二酚几乎不产生氧化还原峰。比较对苯二酚和邻苯二酚在纳米金电极的的氧化还原峰。两者峰电位有较大区别,相互之间没有干扰,据此建立同时测定苯二酚混合物中的对苯二酚和邻苯二酚分析方法。  相似文献   

16.
用阳极氧化和循环扫描的方法电化学预处理得到的玻碳电极(PGCE)有一对可逆的氧化还原峰(Epa=-0.073V,Epc=0.044V)。PGCE能大大提高水溶性的维生素如维生素B2(VB2)的电化学响应。实验表明VB2在PGCE上是吸附行为。PGCE具有很强的稳定性,用其能测定痕量的VB2和复合维生素片剂中的VB2,结果令人满意。  相似文献   

17.
聚苯胺在离子液体中的电合成及其电催化性质   总被引:4,自引:0,他引:4  
以离子液体1-丁基-3甲基咪唑四氟硼酸盐(BMIMBF4)作为溶剂及电解质,运用循环伏安法在玻碳电极上实现了电化学氧化聚合苯胺.聚苯胺膜修饰玻碳电极在空白离子液体及酸性溶液(pH=0~4)中均有较好的响应,并且对邻苯二酚及对苯二酚有很好的电催化效果.  相似文献   

18.
以1-丁基吡啶六氟磷酸盐作为粘合剂制备的离子液体修饰碳糊电极为基底电极,将多孔ZnO纳米球和血红蛋白(Hb)用壳聚糖固定在电极表面制备出电化学酶传感器.紫外可见光谱和傅里叶变换红外光谱实验结果表明Hb在复合膜内保持其基本结构.通过修饰电极在PH 6.0的PBS缓冲溶液中的循环伏安,得到了的一对良好的氧化还原峰,可以证明Hb分子结构中的电活性中心与电极之间发生了直接电子转移,对Hb的电化学行为进行研究,求解了相关的电化学参数,该Hb修饰电极对三氯乙酸表现出良好的电催化活性.  相似文献   

19.
用水热法合成了硅基有序介孔分子材料SBA-15,研究了细胞色c(Cyt c)在SBA-15修饰玻碳(GC)电极表面的直接电化学行为.结果表明,在pH 7.0磷酸缓冲溶液中(PBS),细胞色素c在SBA-15修饰电极表面表现出一对准可逆的氧化还原峰,电位差ΔE为87 mV,式电位E0′为0.275 V,峰电流的大小与循环伏安扫描速度成正比,说明细胞色素c在电极表面过程是受表面控制.固定在电极上的细胞色素c能促进过氧化氢的催化还原,显示出较高的亲和力,为过氧化氢传感器的研制提供理论依据.  相似文献   

20.
制备了单壁碳纳米管修饰玻碳电极(SWCNT/GCE),采用伏安法研究了间、对硝基苯酚异构体在修饰电极上的电化学行为,分别观察到间硝基苯酚(m-NP)和对硝基苯酚(p-NP)的准可逆氧化还原峰,两物质氧化峰电位差为0.192V,说明间、对硝基苯酚异构体可在SWCNT修饰电极上同时测定.采用线性扫描伏安法优化了硝基苯酚同分异构体电化学响应条件.优化条件下,m-NP在浓度2.7×10~(-6)~1.0×10~(-4)mol/L范围内,其峰电流(Ip)和浓度呈线性关系;p-NP在浓度2.0×10~(-6)~1.0×10~(-4)mol/L范围内,Ip和浓度呈线性关系.两者的Ip都与扫速(v)成线性关系,这说明它们在修饰电极上的电化学过程均与吸附传质有关,电极过程是受吸附控制.基于Nicholson方法,获得m-NP和p-NP的电极反应速率常数(kS),并用Hammett方程计算出Hammett反应取代常数ρ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号