首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为从热力学角度揭示陆相页岩对CH_4和CO_2的吸附机理,选取鄂尔多斯盆地延长组页岩进行不同温度下的CH_4和CO_2等温吸附实验,分析了过剩吸附量与绝对吸附量的差异,进而利用Clausius-Clapeyron方程研究了基于不同类型吸附量的吸附热力学特征。研究结果表明:绝对吸附量大于过剩吸附量,二者差值随温度升高而减小,随压力升高而增大,且吸附气为CO_2时,二者差值较CH_4大;采用过剩吸附量获得的等量吸附热明显偏高,并存在低吸附量阶段的负值现象,应当采用绝对吸附量计算等量吸附热;等量吸附热与吸附量间满足线性正相关,且吸附CH_4的等量吸附热大于CO_2,吸附CH_4和CO_2的绝对初始等量吸附热分别为52.04和27.71 kJ/mol,说明延长组页岩对CH_4的吸附作用力较强。  相似文献   

2.
为研究超临界CO_2置换CH_4过程中温度对置换效果的影响,以屯留煤样为研究对象,借助ISO-300型等温吸附仪对煤样进行了不同温度(35、45、55℃)、相同注入压力(12.7 MPa)条件下的CO_2置换解吸CH_4试验。研究结果表明:置换解吸过程中,超临界CO_2吸附相体积分数随着温度升高而增加,随压力降低而增大,CH_4吸附相体积分数呈相反变化趋势;超临界状态下,试验直接测得的气体吸附量为Gibbs吸附量,气体真实吸附量与压力之间符合Langmuir吸附曲线,且与Gibbs吸附量的差值随压力的升高而增大;试验压降范围内,温度为35℃条件时,CH_4气体单位压降解吸率最高,显示出温度接近临界温度时,超临界CO_2置换效果最佳。  相似文献   

3.
干酪根对甲烷和二氧化碳的吸附行为对页岩气的开采有着重要的意义。根据有机质结构特点,构建三维干酪根模型,采用巨正则系综蒙特卡洛(GCMC)方法和分子动力学方法(MD)研究CH_4和CO_2的气体竞争吸附行为。结果表明:1 CH_4和CO_2单组分吸附时吸附量随着压力的增大会增大,CO_2吸附会在较小的压力达到饱和。两种气体吸附符合Langmuir吸附规律,可以使用Langmuir方程进行拟合;2 CO_2和CH_4在干酪根中的吸附热均随着各自的吸附量先减小后在增大;3在相同的压力下,吸附选择性随着温度的升高而减小。在同一温度下,低压阶段,吸附选择性随着压力的升高而减小。由选择性数值看出,CO_2更易被干酪根吸附。  相似文献   

4.
探讨吞吐过程中CO_2与吸附气作用机理对提高页岩气采收率的意义。基于低场核磁共振T_2谱测试原理,对鄂尔多斯盆地苏里格东区长7段页岩开展了注CO_2吞吐实验,通过对T_2谱分布中的吸附态、游离态和自由态CH_4的识别与标定,从微观孔隙尺度研究了CO_2注入后焖井阶段和衰竭降压过程中吸附气的解吸机理,定量表征了多态CH_4间的转化特征和采出程度。实验结果显示,随着页岩体系饱和压力的升高,3种形态CH_4的赋存量也在不断增加。在CO_2注入后的焖井阶段,吸附态CH_4的解吸效率随焖井时间的增加先快速增加后趋于稳定,而解吸速率则呈现先增大后降低的趋势,解吸后的吸附态CH_4会向游离态发生转换,但并不能直接转换为自由态。在衰竭降压过程中,随着吸附态CH_4含量的减少,多态CH_4间的动态转换平衡被破坏,当吸附态向游离态再向自由态转换的速率小于产气速率时,自由态CH_4对应的波峰将消失。衰竭降压可以提高游离态和自由态CH_4的采出程度,但很难增大吸附态CH_4的采出程度,且衰竭降压开发时存在一定的压力下限(5.8 MPa),当压力低于此下限时,继续降压对多态CH_4采出程度的影响很小。  相似文献   

5.
准确测定页岩对CO2的吸附能力是研究页岩能否长期稳定封存CO2以及评价注CO2提高页岩油气采收率的关键。基于质量守恒原理,在考虑CO2吸附相体积对吸附系统自由空间体积影响的基础上,推导了绝对吸附量与吉布斯吸附量之间的转换关系式。并通过开展重量法等温吸附实验,研究了黏土矿物含量、CO2注入压力、相态类型、温度和页岩颗粒粒径对CO2吸附量的影响。实验结果表明,液态CO2比气态和超临界态具有更高的吸附量,且CO2吸附量随注入压力的增加先快速增大后趋于稳定,随温度的升高而降低,但受颗粒粒径影响较小。CO2绝对吸附量大于吉布斯吸附量,两者差值随页岩黏土矿物含量和页岩颗粒粒径的增加而增大,随储层温度的升高而降低,随CO2注入压力的增加先增大后减小。当CO2为液态时两者差值最大,其次为超临界和气态。目标区页岩CO2吸附能力与已成功实施封存的...  相似文献   

6.
利用自主设计的页岩中气体吸附解吸实验装置,在不同温度和压力条件下研究CO2在不同页岩中的吸附解吸性能。结果表明:CO2在页岩上的等温吸附曲线属于典型的Ⅰ型等温曲线,可采用Langmuir模型对吸附及解吸数据进行拟合;相同温度下,CO2在页岩中的吸附量随着压力的升高而增大;相同压力下,CO2在页岩中的吸附量随着温度的升高而减小;相同温度压力条件下,CO2解吸过程中存在解吸滞后现象,且解吸附曲线表征的最大吸附能力低于吸附曲线表征的最大吸附能力;CO2在页岩上最大吸附量随有机碳含量增加而增大,随石英含量增加而减小。  相似文献   

7.
选取有机质作为研究对象,构建干酪根模型,采用巨正则系综蒙特卡罗(GCMC)方法和分子动力学方法(MD)研究不同摩尔分数、不同压力下CH_4和CO_2的气体的竞争吸附行为以及吸附引起的干酪根本体形变。结果表明:CH_4和CO_2单组分吸附时吸附量随着压力的增大而增大,CO_2吸附会在较小的压力时达到饱和,两种气体吸附符合Langmuir吸附规律,可以使用Langmuir方程进行拟合;在相同的压力和温度下,CO_2/CH_4吸附选择性会随着CO_2摩尔分数的增大而减小,CO_2更易被干酪根吸附;干酪根与CO_2有较强的相互作用,干酪根中不同的原子对吸附起着不同的作用;低压阶段吸附是引起体积应变的主要原因,高压阶段压力对体积应变发挥明显作用。  相似文献   

8.
应用Materials Studio(MS)软件构建了3种不同含水量(水分子质量分数0%、3%、5%)的干酪根模型,基于巨正则蒙特卡洛(GCMC)和分子动力学(MD)方法对不同含水量干酪根模型中多组分气体(CH_4、CO_2和N_2)竞争吸附、扩散规律以及吸附体系的总能量变化进行了研究。结果表明:随着干酪根中含水量的增加,纳米孔隙中水分子毛细凝聚效应增强,多组分气体在干酪根中的吸附量及扩散系数均降低。当吸附体系中吸附质分子数增加时,体系释放的能量逐渐增大而总能量减小,增加含水量会抑制体系总能量减小。升高温度会抑制多组分气体的吸附而促进多组分气体的扩散,反之增大压力能够促进多组分气体的吸附而抑制其扩散。由于气体吸附数量与分子动力学直径成反比,在竞争吸附中,CO_2的存在会大幅降低干酪根对CH_4和N_2的吸附。同温同压下,CH_4、CO_2和N_2在含水干酪根中的吸附量以及平均等量吸附热大小关系均为CO_2CH_4N_2,而扩散系数大小关系为CO_2CH_4N_2,扩散活化能的大小关系为CO_2CH_4N_2。研究从微观角度揭示了多相(气相和液相)、多组分气体(CH_4、CO_2和N_2)在页岩干酪根中的竞争吸附和扩散特性,其结论可为页岩气的高效开采提供一定的理论依据。  相似文献   

9.
结合天然气液化储运过程中低温与常规变压吸附(PSA)工艺,提出低温变压吸附净化天然气工艺.用椰壳活性炭对CO2和CH4单组份气体进行静态吸附,以及CO2/CH4二元混合气体动态模拟吸附分离.利用静态体积法研究-30~25 ℃,1.2~2.5 MPa下CO2和0~4 MPa下CH4在椰壳活性炭上的吸附行为,椰壳活性炭对两者的吸附量均随温度降低而增大.动态吸附分离实验压力为0.45,0.85,1.85 MPa,随温度或压力的降低,椰壳活性炭对CO2/CH4二元混合气体的分离因子不断增大,温度对其影响效果大于压力的影响,且在实验温度范围内CH4的动态吸附量呈先增大后减小的变化趋势.研究表明,椰壳活性炭对天然气脱碳具有广阔的应用前景.  相似文献   

10.
为了研究黏土矿物对CH_4的吸附规律和页岩储层对CH_4的最小储集空间界限,利用Materials Studio软件构建三种黏土矿物伊利石、蒙脱石和高岭石的微观模型,运用蒙特卡洛方法和分子动力学方法,研究在不同压力、不同孔径空间下三种黏土矿物对CH_4的吸附规律。结果表明:随着孔径和压力的增大,CH_4气体在三种黏土矿物层间的吸附量逐渐增大;不含水的黏土矿物对CH_4的最小储集空间为0. 4 nm,三种黏土矿物对甲烷的吸附能力随孔隙大小的变化而不同;随着孔径的减小或压力的增大,CH_4气体在三种黏土矿物孔径中吸附越稳定;随着孔径的增加,CH_4气体在黏土矿物孔径中出现多层吸附;三种黏土矿物中吸附的CH_4分子之间的距离均大于0. 075 nm,距离CH_4分子0. 125 nm处出现另一个CH_4分子的概率最大。研究结果对页岩气赋存特征和渗流规律具有重要基础认识作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号