共查询到10条相似文献,搜索用时 46 毫秒
1.
2.
针对工地、危险区域等场景需要实现同时佩戴安全帽与口罩的自动检测问题,提出一种改进的YOLOv3算法以提高同时检测安全帽和口罩佩戴的准确率.首先,对网络模型中的聚类算法进行优化,使用加权核K-means聚类算法对训练数据集聚类分析,选取更适合小目标检测的Anchor Box,以提高检测的平均精度和速度;然后,优化YOLO... 相似文献
3.
4.
5.
针对目前主流口罩佩戴检测算法均需要对样本进行标注,使用的网络模型对电脑硬件配置要求高,无法适用于便携设备或移动端的问题,提出了一种基于MobileNet V2的口罩佩戴识别方法.首先,对口罩佩戴数据集进行构建,并进行数据扩充;然后,通过搭建MobileNet V2模型实现对口罩佩戴的识别;最后,通过选择合适的评价标准进行结果分析.结果表明:该方法对是否佩戴口罩的检测准确率可达99.83%,对口罩佩戴是否标准的检测准确率可达98.97%.该方法在保证准确率和速度的基础上,减小网络体积,适用性更加广泛. 相似文献
6.
基于深度神经网络的入侵检测方法 总被引:1,自引:0,他引:1
为改善传统机器学习技术解决海量网络数据和复杂入侵模式对信息网络的入侵检测的不足,提出一种基于深度神经网络的入侵检测方法.采用神经元映射卷积神经网络(NPCNN)为网络结构,使用较少的连接和参数,具有易于训练和泛化能力强等优点.在训练过程中,使用Re LU激活器作为非线性激活函数,采用Adam算法进行模型学习,从而避免了传统深度网络须进行预训练的过程.在NSL-KDD数据集上的实验结果表明:提出的方法较基于传统机器学习的入侵检测方法具有良好的特征表征学习和分类能力,且随着数据量的增大,模型的分类精度有较大的提升. 相似文献
7.
行人检测在视频监控等应用领域具有重要价值.在应用场景复杂、响应速度快的视频监控应用领域,如何提高行人检测的准确率和检测速度是计算机视觉研究者们研究热点之一.深度学习在计算机视觉领域不断创造佳绩,使得深度卷积神经网络在智能监控的通用目标检测中被广泛使用.论文主要介绍一种基于卷积神经网络的行人检测实现方法.该方法以Tens... 相似文献
8.
为解决EEG自动检测的错误率非常高的问题,提出了一种基于深层卷积神经网络(CNN)对脑电图进行异常检测的方法:首先,对多个异构数据源按标准进行重构和预处理,生成了有118 716个样本的训练集和有12 022个样本的测试集;然后,构建有快捷连接的深层CNN模型,以自动化学习ECG特征并进行分类识别;接着,将模型在训练集上进行试验与调参,保存了性能最好的模型参数;最后,在测试集上进行预测.预测结果显示该模型达到了94.33%的分类准确率.通过所提方法对脑电信号进行处理与分析,能够自动提取EEG特征并进行异常识别,从而达到快速检测与辅助诊疗的目的. 相似文献
9.
在无人机巡检图像中,检测出绝缘子是实现输电线路状态分析的关键.本研究采用轻量级卷积神经网络代替传统的人工特征提取器,获取输入图像的深层特征;利用深度学习目标检测网络对所提取特征进行处理和训练学习,实现多尺度、多种类的绝缘子目标检测.实验结果表明:该方法可以准确快速地识别出以山林背景为主的瓷质和复合两类绝缘子,其检测精度... 相似文献