首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
多级齿轮箱是机械传动的重要部件,针对运行过程中的状态识别问题,研究并提出一种基于振动信号的小波包分解能量谱特征提取和支持向量机(support vector machine, SVM)的智能评估新方法。用小波包分解算法对振动信号进行分解,提取时频信号的能量谱构建多级齿轮箱状态特征集,训练SVM模型。针对SVM的惩罚因子C和高斯核参数g选择困难的问题,结合遗传算法(genetic algorithm, GA)和粒子群算法(particle swarm optimization, PSO)的基因粒子群算法(genetic algorithm-particle swarm optimization, GAPSO)优化SVM参数。GAPSO同时具有GA全局搜索的性能和PSO快速收敛特点。将优化后的SVM算法应用于多级齿轮箱故障诊断,结果表明,GAPSO-SVM模型故障识别精度为98.55%,高于基本的SVM、PSO-SVM和BP神经网络,而且泛化能力强,该方法更适合多级齿轮箱故障诊断。  相似文献   

2.
为解决船舶电力系统故障识别的准确性以及快速性问题,在BP神经网络预测的基础上,提出一种改进的粒子群(PSO)和遗传算法(GA)混合优化BP神经网络的方法。改进包括两方面:一是对粒子群的惯性权重和学习因子进行改进;二是对遗传算法的变异概率和交叉概率进行改进。对发生故障时的三相电压信号进行小波包分解,提取各频率段的能量熵作为故障特征。经测试,优化后的算法诊断准确率明显提高,神经网络训练次数和误差减小,验证了改进GA-PSO-BP算法的可靠性,以及用于船舶电力系统故障诊断的实用性。  相似文献   

3.
采用基于波形直接分析的神经网络故障诊断方法实现电力电子电路在线故障诊断。以三相整流电路为例,对电路发生故障时输出的波形进行分析,用故障波形的采样数据制作的样本对神经网络进行训练,将训练好的神经网络用于故障诊断。仿真实验表明该方法是有效的。  相似文献   

4.
由电力开关管组成的逆变器非线性较强,进行故障诊断比较困难。采用SAPSOBP综合诊断网络(模拟退火算法、粒子群算法和BP神经网络的有效结合)和小波分解相结合的方式,以输出侧电压作为特征信号,经小波分解后的离散近似信号和离散细节信号作为特征向量,通过模拟退火算法对粒子群算法权重和加速因子的优化,结合被粒子群算法优化了阈权值的BP网络及其分类预测功能,对特征向量诊断。由实验结果表明,SAPSO-BP网络和小波分解相结合对故障元件的诊断有良好的效果。  相似文献   

5.
针对滚动轴承故障诊断方法存在的局限性及缺陷,在利用小波分析提取滚动轴承故障信号特征向量基础上,提出基于粒子群 蛙跳算法优化的BP神经网络滚动轴承故障诊断方法。该方法采用粒子群 蛙跳算法优化BP神经网络结构参数,利用改进BP算法和样本数据训练BP神经网络,实现滚动轴承运行正常和4种不同故障状态的诊断。实验验证结果表明,基于粒子群 蛙跳算法的BP神经网络方法诊断误差最大值仅为005,为未优化的神经网络诊断误差的1/16;与其他算法相比,基于粒子群 蛙跳算法优化的BP神经网络方法的训练时间、训练误差和诊断精度各项指标均为最优,可实现滚动轴承故障的快速、准确、有效诊断。  相似文献   

6.
7.
8.
基于改进粒子群优化算法的电机故障诊断研究   总被引:1,自引:0,他引:1  
针对电机转子故障,利用神经网络方法进行故障诊断研究。将基本粒子群优化(PSO)算法进行改进,并用其训练反向传播(BP)神经网络,对电机转子进行故障诊断。选用电机转子振动频谱分量作为神经网络的训练样本,将故障信息数据作为输入量代入已训练好的神经网络,通过输出结果即可诊断故障类型。仿真结果表明,基于改进PSO算法的BP神经网络可以有效地识别电机常见故障,具有较快的收敛速度和较高的诊断精度。  相似文献   

9.
为提高开关电流电路故障诊断的精度,提出了一种基于小波包优选和优化BP神经网路的开关电流电路特征抽取与识别方法.首先对开关电流电路原始响应信号进行多层次的小波包分解,接着计算N层分解后的归一化能量值,以特征偏离度作为评价选择最优小波包基,构建最优故障特征向量,最后将提取的最优故障特征通过遗传算法优化的BP神经网络进行分类.该方法以实例电路进行验证,结果表明所有的软故障均得到了有效的分类,说明了该方法在开关电流电路故障诊断中的优越性.  相似文献   

10.
针对信息不足、噪声会导致模拟电路故障诊断效率降低问题,提出基于小波分解、主成分分析和神经网络的信息融合故障诊断方法。为了减少噪声影响和减低故障特征维数,采用该方法对电路测试信号进行小波多尺度分解、主成分分析和归一化预处理。根据不同测试激励源,分别构造独立神经网络完成故障初级定位,进而运用D-S证据融合初级诊断结果实现故障最后定位。研究结果表明:所提方法能充分利用不同信息源对容差下模拟电路故障进行诊断,且定位准确率高。  相似文献   

11.
针对常用的BP神经网络须已知结构,且学习算法训练速度慢的缺点,提出一种基于小波包分析与径向基神经网络(RBFNN)的模拟电路故障诊断方法。该方法首先利用小波包分解,归一化作为预处理提取模拟电路的故障特征向量,再将故障特征向量输入到RBF神经网络进行故障诊断。仿真结果表明本方法能够对模拟电路的故障进行有效诊断和定位。  相似文献   

12.
人工神经网络在电力电子电路故障诊断中有广泛的应用.常用的反向传播算法存在着容易陷入局部极小点、对初值要求高的缺点,给故障诊断带来不便.提出了采用遗传算法优化人工神经网络结构的初值,将遗传算法与人工神经网络结合起来,应用于电力电子电路的故障诊断中.仿真实验表明该方法是有效的.  相似文献   

13.
根据 BP神经网络的特点和性能以及电路故障诊断的要求 ,采用了 BP网络的权值与故障模式相对应的方法来进行电路的故障诊断 .该方法利用改进的 BP算法 ,首先建立故障模式 ,然后将故障模式与 BP网络的权值相对应 ,最后将权值作为故障诊断知识 .对模拟电路的软故障进行了仿真 ,仿真结果良好  相似文献   

14.
针对高压断路器在线监测与故障诊断问题,提出了一种基于概率神经网络的高压断路器故障诊断模型.该模型利用Parzen窗函数和Bayes分类规则建立了前向型自监督神经网络,在分析分(合)闸线圈信号的基础上提出了高压断路器故障模型.仿真结果表明,该模型对断路器的故障模式识别过程具有训练速度快、输出误差小和收敛性好等特点.  相似文献   

15.
以泵缸内的压力信号作为系统特征信号,将小波包分解的"频率-能量-故障识别"的模式识别故障诊断方法引入泵阀工作状态监测技术,通过改进的BP神经网络进行故障诊断.此技术已应用于循环泵实时故障诊断系统中.  相似文献   

16.
速度自适应粒子群优化算法在故障诊断中的应用   总被引:1,自引:0,他引:1  
在原始粒子群优化算法(PSO)中设置动态最大限制速度基础上,提出一种速度自适应粒子群优化算法。经过神经网络的测试表明,该算法在收敛速度和精度上都优于原始算法,并且参数选取灵活,容易实现。将改进算法应用于实验室变速箱的神经网络故障诊断系统中,并与PSO和BP算法进行了比较,得出该算法不仅对变速箱故障的识别准确率比较高,而且故障诊断的精度和效率也较高。  相似文献   

17.
为了解决变压器故障诊断中诊断效率低的问题,本文对萤火虫算法(FA)进行了改进,并与小波神经网络(WNN)相结合应用于变压器故障诊断中。小波神经网络结构简单,预测精度高,收敛速度快,但是网络参数不好选择,易陷入局部最优。本文结合混沌算法、粒子群算法、可变步长的思想来改进萤火虫算法,用于优化小波神经网络的参数,再将处理后的数据带入神经网络中进行训练与诊断。实验结果表明,该算法与BP神经网络、支持向量机、小波神经网络、遗传算法改进的小波神经网络和粒子群算法改进的小波神经网络相比诊断正确率均有所提高。  相似文献   

18.
建立了旋转机械故障诊断的神经网络模型,采用小波包分解方法提取特殊频段上的能量作为特征值为神经网络的输入模式,模型具有通用性。并且应用于旋转机械故障样本的识别计算,结果表明该方法在故障诊断中是有效的。  相似文献   

19.
采用多目标粒子群算法的模拟电路故障诊断研究   总被引:1,自引:0,他引:1  
提出了一种容差条件下基于多目标粒子群(MOPSO)算法的模拟电路软故障诊断方法.通过灵敏度分析,建立模拟电路故障诊断的约束线性规划方程组,以元件参数变化量与标称值的百分比作为故障判据.针对MOPSO中目标空间增加时种群选择压力影响算法性能的问题,采用阶有效优化准则代替传统的Pareto优化准则,引入最优折中解作为全局最优解,从而提出基于阶有效的平衡全局搜索策略多目标粒子群(ESEO-MOPSO)算法,并将其用于模拟电路故障诊断的约束线性规划方程组的求解中.仿真结果表明,该方法兼顾故障元件的定位和故障元件参数变化量的估计,可以有效地实现模拟电路在容差条件下的软故障定量诊断.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号