首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在1MH2SO4,Ce(Ⅲ)在铂电极上的氧化-还原伏安图表明,电位扫描速度为0.050Vs^-1时氧化峰电位Epa=0.92V还原峰电位Epc=0.64V,△Ep=0.28V,能峰电位随扫描速度而变化,峰电流Ipa和电位扫描速度的平方根√v不成线性关系:Ce(Ⅲ)在铂电极上的电荷迁移为准可逆过程,生成的Ce(IV)对Mn(Ⅱ)有均能催化氧化作用,催化电流峰电位在1.26V处,催化反应受Mn(Ⅱ)。  相似文献   

2.
用电化学沉积法制备了As-Mo杂多阴离子修电极,在0.3mol/L H2SO4溶液中及0.70V~0.00V电位范围内,该电极具有三对可逆氧化还原表面波,它们分别对应于As-Mo杂多阴离子中Mo的三个2电子氧化还原过程,这三对表面波分别对NO2^-IO3^-及AsMo12O^340离子具有电催化活性,文中给出了其催化机理及浓度响应范围。  相似文献   

3.
在1MH2SO4中,Ce(Ⅲ)在铂电极上的氧化──还原伏安图表明:电位扫描速度为0.050Vs-1时,氧化峰电位Epa=0.92V。还原峰电位Epc=0.64V,△Ep=0.28V,且峰电位随扫描速度而变化,峰电流Ipa和电位扫描速度的平方不成线性关系;Ce(Ⅲ)在铂电极上的电荷迁移为准可逆过程,生成的Ce(Ⅳ)对Mn(Ⅱ)有均相催化氧化作用,催化电流峰电位在1.26V处,催化反应受Mn(Ⅱ)离子向电极表面的扩散控制,Mn(Ⅱ)的氧化产物为MnO2。但Ce(Ⅳ)的催化能力与其在铂电极上再生的速率有关。在本实验条件下,催化作用的效率较低。  相似文献   

4.
在密闭循环反应器中,于290℃下研究了CO存在下催化剂MTPP-CeOx-SiO2(M=Co^2+,Ni^2+,Cu^2+)催化还原NO或N2O的反应。催化NO还原的活性顺序是NiTPP>CoTTP>CuTPP,而N2O还原和NO深度还原为N2的顺序是NiTPP>CuTPP>CoTPP.NOx还原的催化特性和MTPP的电化学氧化机理有关(取决于中心金属或卟啉环被氧化的次序)。CO不仅还原NOx而且  相似文献   

5.
本文对绿色乳杆菌(L.Viridescens)B175产生的α-羟基戊二酸脱氢酶用硫酸铵盐析;DEAE—纤维素柱层折;超滤浓缩;苯基琼脂糖凝胶(PhenylSepharose)疏水层析等方法纯化,使酶的纯度提高117倍。通过HPLC和等电聚焦测得该酶的分子量约为66,000,等电点为4.2。酶催化作用的最适pH5.5,最适温度为60℃,对α—酮戊二酸和NADH的Km值分别为0.14×10(-3)M和0.03×10(-3)M。  相似文献   

6.
聚苯胺掺杂电位区(0.2-0.7V)循环状安图能反映在聚苯胺膜内阴离子特性,Cl^-、ClO^-4、SO^-24和NO^-3等简单阴离子在膜内可通过电位循环交换。Fe(CN)^3-6/4^-氧化还原型阴离子可掺入膜内,而呈明显的氧化还原峰(电位0.5,0.4V),聚苯胺膜可富集和分离Fe(CN)^3-4/4^-离子。对氨基苯酸磺基团阴离子,在正电位下,可与带正电荷骨架膜静电吸引,还可能有某种不可…  相似文献   

7.
研制了以石墨为基体的铁氰酸钴膜化学修饰电极。该电极在以NaCl为支持电解质的溶液中,循环扫描时,显示出两对可逆氧化还原峰(分别位于0.4V及0.8V)。实验证明该电极能催化氧化I-。在还原支的0.4V处,还原电流对2~200ppmI-有良好的线性响应;在氧化支的0.8V处,氧化电流则对0.5~20ppmI-有良好的线性响应。检测下限为0.2ppm。回收率为96.1%~105%。应用该电极测定了海水及食盐中的I-含量,结果满意  相似文献   

8.
本文论述循环伏安法(CV)中铂(Pt)对乙醇(EtOH)的定量吸附特性,及其对葡萄酒中EtOH测定的应用问题。用自制的Pt梳状工作电极。在0.1M的NaOH溶液中,EtOH的氧化峰电位为-240mV(相对Ag/AgCl参比电极)。以3σ背景值计,检出限为0.023%(V/V)。样品分析结果准确度为95.2-104.7%重现性范围2.8-3.1%RSD(n=8)。校准曲线的线性动态范围0.1-8%(  相似文献   

9.
使用合成的钡镁锰矿(TODOROKITE)、碱硬锰矿(HOLLANDITE)型的MnO2及电解MnO2修饰碳膏电极,报告了它们在+1.0V ̄-1.0V电压范围和0.1M KCl溶液中的循环伏安图。Todorokite和hollandite的循环伏安图相似,都没有显明的电流峰。而电解MnO2的循环伏安图中,有两个阳极峰(+0.1V,+0.5VvsSCE)两个阴极峰(0.0V,-0.15V vs SX  相似文献   

10.
中华眼镜蛇毒神经生长因子的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
采用CM-SepharoseCL-6B和SephosilC8以及HPLC层析方法,自广西产中华眼镜蛇毒中分离纯化神经生长因子(NGF),此NGF经8d鸡胚背根神经节体外培养证明具有促进神经纤维生长的活性。经HPLC及聚丙烯酰胺凝胶电泳鉴定为单一组成,经SDSPAGE及HPLC测定分子量分别为24.1KD和24.9KD,等电聚焦电泳测得pI为8.2,氨基酸组分分析表明NGF含酸性氨基酸较少,通过125|标记NGF测定出NGF在生物体内主要分布于肾、肺、及周围神经  相似文献   

11.
12.
将来自嗜热放线细菌Thermobif ida f usca的木糖异构酶(xylose isomerase,XI)基因xylA,连接于酵母表达载体pYES2的半乳糖诱导启动子(PGAL)下,得到重组质粒pYES2-xylA,用其转化酵母菌INVSc1,测定重组酵母菌株INVSc1-xylA的木糖异构酶活性,并对重组酵母菌株进行木糖葡萄糖共发酵试验,探讨在酿酒酵母中建立新的生产乙醇木糖代射途径。结果木糖异构酶在75℃,pH值6.8的酶活力最高,在酿酒酵母中成功地获得活性表达,并且SDS-PAGE电泳有明显的特异性表达产物带,单体分子量为43kD。INVSc1-xylA在木糖葡萄糖共发酵实验中消耗木糖和产生乙醇分别比对照菌提高53.8%和36%,提高了其生产乙醇的能力。  相似文献   

13.
Hemicellulose,the second,most common polysaccharide in nature constitutes approximately 20-35% of lignocellulosic biomass.Amongst the vast array of chemicals derived from lignocellulosics,furfural is the key chemical that finds wide applications in oil refining,plastics,pharmaceutical and agrochemical industries.The paper introduces the productive process of furfural.The new technologies and applications were also pointed out.  相似文献   

14.
Fermentation of the pentose sugar xylose to produce ethanol using lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyce cerevisise, an efficient ethanol producer, cannot utilize xylose because it lacks the ability to convert xylose to its isomer xylulose. In this study, XYLA gene encoding xylose isomerase (XI) from Thermoanaerobacter tengcongensis MB4T and XKS1 gene encoding xylulokinase (XK) from Pichia stipitis were cloned and functionally coexpressed in Saccharomyces cerevisiae EF-326 to construct a recombinant xylose-utilizing strain. The resulting strain S. cerevisiae EF 1014 not only grew on xylose as sole carbon source, but also produced ethanol under anaerobic conditions. Fermentations performed with different xylose concentrations at different temperatures demonstrated that the highest ethanol productivity was 0.11 g/g xylose when xylose concentration was provided at 50 g/L. Under this condition, 28.4% of xylose was consumed and 1.54 g/L xylitol was formed. An increasing fermentation temperature from 30℃ to 37℃ did not improve ethanol yield.  相似文献   

15.
本实验利用传统的方法从森林土样中分离筛选出一株能有效发酵木糖生产乙醇的酵母菌株。首先通过富集培养、初筛、复筛等步骤筛选出一株(1#菌株)能够利用木糖的酵母菌株,对其进行了生理生化性能指标试验,初步鉴定为假丝酵母菌(Candida sp.)。并对其进行了利用木糖发酵乙醇试验,实验结果表明:在培养温度为30℃,pH5.0,接种量为10%左右,初始木糖浓度为40g/L时,该菌株可以利用木糖发酵生产乙醇,产乙醇量为1.06g/100mL,相当于理论转化率的56.9%。  相似文献   

16.
木糖对马克斯克鲁维酵母菊糖酶合成的诱导作用   总被引:1,自引:0,他引:1  
马克斯克鲁维酵母可利用木糖、菊糖等多种碳源。利用木糖为碳源时菊糖酶产量最高,酶活力可达30.4U/mg菌体(干重),菊糖次之;利用葡萄糖、乳糖等酶活力均很低。用洗涤菌体进行诱导试验也表明,木糖能诱导该酵母菌菊糖酶的合成,蛋白质合成抑制剂环已亚胺可抑制木糖对该 酶的诱导作用。在以木糖为碳源的生长培养基中添加葡萄糖能明显地阻遏菊糖酶的形成。试验结果表明,该菌株菊糖酶的合成受诱导和分解产物阻遏机制的双重调节,木糖是酵母菊糖酶合成的一种良好的天然诱导剂。  相似文献   

17.
在离子液体反应体系中,催化生物质基木糖脱水制备糠醛.考察了反应温度、反应时间、催化剂用量、木糖浓度、含水量、反应体系重复使用次数等因素对反应的影响.结果表明:当离子液体1-丁基-3-甲基咪唑氯盐([BMIM]Cl)用量为2 g、催化剂Al Cl_3·6H_2O用量为0.5 mmol、木糖质量分数为5%、反应温度为160℃、反应时间为10 min时,糠醛最高得率可达76.6%;反应体系具有良好的稳定性,重复使用5次,催化活性没有明显下降.  相似文献   

18.
利用玉米芯水解液发酵生产木糖醇的研究   总被引:3,自引:0,他引:3  
以玉米芯为材料,分别从压强、温度、酸浓度以及水解时间几个方面对玉米芯的水解条件进行了研究,确定低压、120℃、水解时间为2 h作为玉米芯半纤维素的水解条件;同时研究了利用玉米芯水解液发酵生产木糖醇的条件,结果表明热带假丝酵母(Candida tropicalis)的最优发酵条件为:初始pH 7.5,装液量70%,接种量10%,发酵温度28℃.  相似文献   

19.
木糖还原酶(xylose reductase,XR)是木糖代谢生成乙醇途径中一个重要的酶,目前利用纤维素生成酒精的关键问题之一:木糖代谢过程中XR和木糖醇脱氢酶(xylitol dehydrogenase,XDH)的氧化还原不平衡。本研究借助生物信息学手段(酶三维结构建模、酶和辅酶分子对接),充分分析数据库资源,找到了一些可能影响XR酶活性或辅酶依赖性的关键氨基酸。毕赤氏酵母XR与NADP之间有Lys21(K)、Val222(V)、Glu223(E)、Phe236(F)和Thr273(T);毕赤氏酵母XR与NAD之间有Val222(V)、Glu223(E)、Phe236(F)、Glu237(E)和Thr273(T);热带假丝酵母XR与NADP之间有Asn278(N)和Arg282(R)。对比两种辅酶与毕赤氏酵母XR形成氢键的氨基酸,如果使毕赤氏酵母XR只与辅酶NAD结合,则可以将Lys21替换成其它的氨基酸,因Lys21在所有XR序列中完全保守,需要进行氨基酸替代模拟计算预实验,在确保酶三维结构不变及NAD可以结合XR的前提条件下替代Lys21;如果使毕赤氏酵母XR只与辅酶NADP结合,则可以将Glu237(不完全保守)替换成其它的氨基酸。另外,还可以根据需要将这些形成氢键的氨基酸进行组合替代。要改变热带假丝酵母XR的NADP依赖性,可以替代Asn278(N)和/或Arg282(R)(不完全保守)。本研究为进一步酶的理性设计(提高活性及改变辅酶依赖性)并在分子水平上对木糖还原酶进行改造打下了基础。  相似文献   

20.
对休哈塔假丝酵母初始菌株经过驯化筛选出一株TZ-8高产酒精菌株,研究了木糖初始浓度、温度、转速以及pH值对TZ-8菌株发酵产乙醇的影响,实验结果表明,最适发酵条件是木糖初始浓度为40 g/L,温度为30℃,转速90~110 r/min,初始pH4.5~5.0,乙醇产量为11.02 g/L,木糖利用率达到86.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号