首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
采用二维数值模拟的方法计算了表面放电型PDP在不同结构下相邻3个显示单元的放电过程.研究了放电过程中各单元内电子、氙谐振态浓度分布和其平均浓度随时间的变化情况.在流体模型计算基础上,采用蒙特卡罗模型对单元内大量谐振光子的辐射、捕获过程进行模拟跟踪,从而得出各放电单元内所产生谐振光子在荧光粉层上的分布.研究了放电过程中相邻单元之间的影响,结果表明,对传统条形障壁结构,单元内维持电极间距增大,放电空间高度增加会使放电串扰和发光串扰加强,Waffle型障壁结构不仅能提高放电效率,而且能有效阻止串扰的发生.  相似文献   

2.
对PDP维持电极间插入带电辅助电极的新单元放电特性进行了模拟研究,并与传统的长间隙放电单元的模拟结果做了比较.模拟结果表明:新单元的Xe激发效率高于传统结构的Xe激发效率,并且Xe激发效率与电压成反比;在维持间隙大于360 μm时,新单元的最小维持电压低于传统单元的最小维持电压,当维持间隙大于或等于450μm时,辅助电极降低最小维持电压的优点尤为明显;当辅助间隙在60~100μm时,最小维持电压较小;与长间隙单元相比,新单元对荧光粉的损伤减轻50%以上.模拟结果对新结构PDP单元优化设计提供了指导.  相似文献   

3.
利用实验和数值模拟方法研究等离子体显示屏放电单元中的电极间隙、长度、壁障高度等不同参数对放电特性的影响.结果表明,放电效率随电极长度、间隙大小的增大而增大,壁障的存在也使效率略有增加并导致单元有效电容减小,但对放电电压影响很小.单元高度对放电效率影响不大,但可以降低同样间隙下的放电电压.合理选择电极结构可以在较低的维持电压下获得较高的放电效率.  相似文献   

4.
刘永勤 《河南科学》2010,28(5):592-595
在高速互连设计电路中,耦合微带线间的串扰是影响电路性能和稳定性的主要因素.为了降低线间串扰,添加有接地过孔的防护线对减小串扰起到了很好的作用.在维持3条线(防护线和两条微带线)中两两之间的中心距不变的情况下,加大防护线的宽度,可有效减小线间的远端和近端串扰.利用FDTD方法对该结构进行模拟,给出了接地孔的有效放置方法.  相似文献   

5.
提出了一种基于串扰延时查找表的静态时序分析方法.该方法首先由芯片版图提取出串扰线仿真电路,然后采用批处理仿真方式得到串扰延时库.之后采用串扰延时分析算法,通过算法自动计算出跳变时间差和负载,处理多攻击线等,最终基于串扰延时库的查找表法进行分析计算,得到精确的串扰延时值.实验结果表明,采用本文提出的基于串扰延时查找表的静态时序分析方法所留裕量在7.24%~37.70%之间,为业界可接受范围内.  相似文献   

6.
何锋  刘纯亮  李永东  孙鉴 《西安交通大学学报》2005,39(10):1147-1150,1154
为了降低五电极交流等离子体显示板(AC PDP)的维持放电电压,提出了一种新的触发驱动方法.该方法利用2个辅助间隙内放电过程相互独立的特性,在触发期间采用单个辅助间隙进行触发放电以提高主维持间隙的壁电压.二维流体模拟结果表明,新的触发驱动方法可将五电极AC PDP主维持间隙的壁电压提高30 V左右,从而使其维持电压降低了10~20 V,降低了对驱动电路的要求,同时真空紫外辐射效率比传统三电极AC PDP提高了50%以上.  相似文献   

7.
使用防护带抑制微带线间串扰的研究   总被引:1,自引:0,他引:1  
为减少耦合微带线间的串扰,在满足端接匹配的条件下,建立了印刷电路板(PCB)耦合微带线间串扰测试结构.通过有限元分析和实验测试,研究了在PCB微带线之间未加防护带和添加防护带对线间串扰的影响,考察了线间串扰对防护带的宽度和接地孔间距的依赖性.数值分析和实验结果表明,为了获得抑制PCB微带线间串扰的最佳效果,防护带的宽度存在一个最佳值,使用此最佳值,近端串扰峰值衰减要比没有防护带时多9dB,远端串扰峰值衰减多7dB;使用增加宽度的防护带抑制非平行微带线间串扰同样有效;防护带上密布的接地孔间距必须满足一个临界条件;而接地孔半径的变化对串扰没有影响.  相似文献   

8.
为了克服现有技术制作的彩色等离子显示屏存在的亮度和发光效率较低的缺点,提出一种全新结构的显示屏及其驱动技术。该屏的寻址放电和维持放电在不同的间隙产生,解除了寻址与维持工作状态的相互制约。选取较小的寻址放电间隙可降低寻址电压,从而降低寻址的功耗,而选取较大的维持放电间隙可提高显示屏的亮度和发光效率。实验结果表明,采用新结构显示屏,其峰值亮度可达600cd/m^2。  相似文献   

9.
论文针对一种基于多用户的全频段四输出Ku卫星电视室外单元进行设计研究.借助于Ansof Designer软件的仿真优化,设计出一款全频段四输出卫星室外单元,解决了多种信号同时工作时产生的串扰和非线性问题,仿真和测试结果证明了论文设计方案的可行性和软件仿真的准确性.  相似文献   

10.
在当今快速朝着大规模、小体积、高速度的方向发展的电子设计领域中,体积减小导致电路的布局布线密度变大,同时信号的频率还在提高,使得串扰成为高速、高密度PCB设计中值得关注的问题,就串扰的机理,分析了影响串扰的因素,并提出相应的控制方法。  相似文献   

11.
为研究各种物理因素对高压电场干燥速度的影响.提高干燥效率,选用豆腐为干燥物进行高压电场干燥实验.考察了电源电压、温度、上下电极间距、针间距等物理因素对高压电场干燥速度的影响.结果表明:干燥电压与干燥速度具有一定的正相关性,上下电极间距和针电极间距均对干燥速度有一定影响,且存在一最佳的间距;在上下电极间距9 cm、针间距8 cm、干燥电压45 kV时,干燥速度最快;温度的增加可提高干燥速度.  相似文献   

12.
优化电极场畸变间隙开关动作特性的实验研究   总被引:3,自引:0,他引:3  
对电极经过优化设计的场畸变间隙开关的可控特性和击穿时延进行了较深入的研究。结果表明:当触发电极距下电极的距离为主电极距离的1/4和1/3处时,最低可靠击穿电压只有自击穿电压的55.8%和74.5%。适当下移触发电极可明显增大可控击穿电压范围。开关击穿时延受主间隙电压影响较大,触发电压对开关击穿时延的影响不显著。  相似文献   

13.
该文采用三维电极反应器实验装置,利用电激发羟基自由基的强氧化性来处理氰化物,将其氧化分解为二氧化碳和氮氧化合物。反应器使用石墨极作为阴阳电极,颗粒活性炭填充在石墨电极间作为粒子电极,采用直流电源进行供电,分析了在该三维电极系统中,进水浓度,进水pH值、施加电压以及反应时间等因素对氰化物降解率的影响。试验数据表明,采用三维电板激发羟基自由基处理电镀含氰废水,去除率可高达90%以上。随着施加电压的增加、反应时间的延长,氰去除率均增大,但降解速度变缓。  相似文献   

14.
交流等离子体显示板寻址和维持放电的二维流体模拟   总被引:2,自引:0,他引:2  
采用二维流体模型对表面放电型交流等离子体显示板的放电过程进行了数值模拟,放电气体为Ne 5%Xe(体积分数)混合气体,模拟时间包括寻址脉冲及其后一个维持脉冲。通过模拟,得到了放电过程中粒子密度和壁电荷等物理量随时间和空间的变化规律,结果与实际的物理过程相符合。计算结果表明,寻址放电产生的壁电荷在维持和扫描电极间形成的壁电压超过了150V,维持期间施加-170V电压可维持放电的继续进行。  相似文献   

15.
以“金/1,4-二氰基甲苯分子(C6H4(CN)2)/金”隧道结为研究对象,从第一性原理出发,计算了电极距离和外部电压2个因素对隧道结电子隧穿特性的影响。隧道结的开启电压随电极距离的变化不是单调的,从1.278nm到1.298nm,开启电压减小;从1.298nm到1.398nm,开启电压增大。外部电压导致界面处的电荷积累会阻碍电子的隧穿。理论计算的电流、电导曲线和实验曲线符合较好。  相似文献   

16.
用电絮凝法处理印染废水,考查了反应时间、极板电压、废水pH值和电极间距对印染废水CODcf去除率的影响.通过正交试验,确定了电絮凝法印染废水处理过程的优化条件为:反应时间40min,极板电压35V,废水pH值8,电极间距3cm,CODcr去除率可迭89.65%.  相似文献   

17.
水中脉冲高压放电诱导产生H_2O_2和O_3的研究   总被引:4,自引:2,他引:2  
采用自制的针一筒电极脉冲高压放电装置进行水中高压放电诱导产生H2O2和O3的实验,研究了电极间距,放电电压,放电时间,放电方式曝气条件等因素对诱导产生H2O2和O3的影响,同时对放电过程能耗及其效率进行了研究.结果表明:电极间距和放电时间对产生H2O2和O2的浓度有较大影响,放电电压和放电方式影响不大.曝气条件下进行高压放电时,水中会产生NO2ˉ,NO2ˉ等阴离子,水体系pH降低,电导率增大.放电过程能量有效利用率为88.3%.  相似文献   

18.
同面散射场电容传感器的电极结构与敏感特性   总被引:10,自引:0,他引:10  
同面散射场式电容传感器极板所产生的电场呈散射状,传统的电磁场理论很难得到精确的解析解,给传感器的设计及性能优化带来很大困难。该文在电磁场分析的基础上,采用有限元分析的方法研究了传感器电极结构与敏感特性之间的关系,并通过实验对分析结果进行了验证。结果表明:在用于金属目标的非接触位移测量时,传感器两电极极板间的距离存在最优值;叉指结构传感器量程和灵敏度均优于普通结构传感器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号