首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
用密度泛函理论(DFT)的B3LYP和B3P86方法,在6 311 G(d,p)基组水平上研究了HCO自由基与NO2反应的微观机理,全参数优化了反应过程中各反应物、中间体、过渡态和产物的几何构型.在CBS QB3及G3水平上计算了各驻点的能量.振动分析和IRC计算结果都证实了中间体和过渡态的真实性.从对HCO自由基与NO2的反应机理的研究结果看,HCO自由基与NO2反应的几条通道控制步骤的活化能分别为112.49和291.49kJ·mol-1,反应HCO NO2→HONO CO的活化能较低为主反应通道.理论计算所得的反应产物是HONO,CO2,NO,CO,H,这些产物已被实验手段检测到,这说明以上结论与实验值相吻合,从而证明我们的研究结果是可靠的.  相似文献   

2.
H2CO与HO自由基反应机理的理论研究   总被引:2,自引:1,他引:2  
采用密度泛函理论(DFT)的B3LYP方法,在6-311 G(d,p)基组水平上研究了H2CO与HO自由基反应的微观机理,全参数优化了反应过程中各反应物、中间体、过渡态和产物的几何构型.研究发现:H2CO与HO自由基反应的两条反应通道都是可行的,其生成产物是H2,CO2和H原子.从构型参数看,对于经典分子的计算结果与文献值很接近,表明计算的结果是可靠的.  相似文献   

3.
用量子化学UMP2方法,在6-311 G^**基组水平上研究了CFH2与臭氧反应机理,全参数优化了反应过程中反应物、中间体、过渡态和产物的几何构型,在UIQCISD/6-311 g^**水平上计算了它们的能量,并对它们进行了振动分析,以确定中间体和过渡态的真实性,同时应用经典过渡态理论计算了反应的速率常数,研究结果表明,CFH2自由基与臭氧间的反应活化能很小,反应活性很大,其对大气臭氧的损耗也将很大.同时发现CFH2与O3的反应是强放热反应。  相似文献   

4.
HO自由基与CO反应机理的量子化学研究   总被引:2,自引:0,他引:2  
用密度泛函(DFT)的B3LYP方法在6-31++G^**水平上研究了HO自由基与CO反应的微观机理,优化得到了反应途径上的反应物、中间体、过渡态和产物的构型,通过振动分析对中间体及过渡态进行了确认。对单点用QCISD(T)/6-31++G^**计算了能量,同时进行了零点能校正。研究结果表明HO自由基与CO的反应表现出亲核特征。  相似文献   

5.
NO与OH自由基反应机理的理论研究   总被引:1,自引:5,他引:1  
用MP2方法,在6-311 G(d,p)基组水平上研究了NO与OH自由基反应的微观机理,全参数优化了反应过程中各反应物、中间体、过渡态和产物的几何构型,考虑零点能校正,同时采用QCISD(T)/6-311 G(d,p)方法得到了更为精确的能量.振动分析结果证实了中间体和过渡态的真实性,IRC计算结果进一步证实了过渡态的真实性.从对NO与OH自由基反应机理的研究结果看,NO与OH自由基反应为双通道反应过程,分别为:NO OH→IM1→TS1→NO2 H,NO OH→IM1→TS2→IM2(HNO2).研究发现,通道NO OH→IM1→TS2→IM2(HNO2)是NO与OH自由基反应的主反应通道,其主要产物是HNO2.  相似文献   

6.
CH2O与H反应机理的量子化学研究   总被引:1,自引:6,他引:1  
用密度泛函理论(DFT)的B3LYP方法,在6-311 G(3df,3pd)基组水平上研究了CH20与H自由基反应的微观机理,全参数优化了反应过程中各反应物、中间体、过渡态和产物的几何构型,在CCSD(T)水平上计算了它们的能量.振动分析结果证实了中间体和过渡态的真实性,从对CH20与H的反应机理的研究结果看,CH20与H原子反应为3条反应通道多步反应过程,cH20与H原子反应的主要反应通道是CH20 →H→TS6→CHO H2,其主要产物是自由基CHO和H2,与实验结果吻合.  相似文献   

7.
用密度泛函理论(DFT)中的B3LYP方法,在6-311++G(d,p)基组水平上研究了CH2与OH自由基反应的微观机理,全参数优化了反应过程中各反应物、中间体、过渡态和产物的几何构型,经振动分析证实了中间体和过渡态的真实性,并在G3水平上计算了它们的能量.研究结果表明,OH自由基与CH2自由基反应为多通道多步反应过程,从反应的活化能来看,每一条通道都是可行的,比较反应通道的控制步骤的反应活化能发现,CH2与OH自由基反应主要通道是IMl→TSl→H2CO+H.  相似文献   

8.
CH自由基与HNCO反应机理的理论研究   总被引:2,自引:1,他引:2  
用MP2方法,在6-311++G(d,p)基组水平上研究了CH自由基与HNCO的反应机理.全参数优化了反应过程中反应物、中间体、过渡态和产物,选用更高水平的QCISD(T)/6-311++G(d,p)和G3方法计算了相应的能量.研究结果表明:CH自由基与HNCO反应存在4条反应通道,分别为(1)CH+HNCO→IM1→TS1→CH2+NCO;(2)CH+HNCO→IM1→TS2→IM2→TS3→H2CN+CO;(3)CH+HNCO→IM(cis)→TS(cis)→HCNH+CO;(4)CH+HNCO→IM(cis)→TS(cis-trans)→IM(trans)→TS(trans)→HCNH+CO.其中通道(3)具有相对较低的活化能,且为放热通道,是反应的主要通道.  相似文献   

9.
采用量子化学密度泛函理论与从头算分子轨道理论研究了CH自由基与NO反应的机理,在B3LYP/6-311++G(d,p)水平上优化了反应过程中反应物、中间体、过渡态和产物的几何构型,并在G3水平上计算了它们的能量,同时对它们进行了振动分析,以确定中间体和过渡态的真实性.从对CH自由基与NO反应机理的研究结果看,CH自由基与NO反应为多通道反应.可能的产物是OH+CN、0+HCN、H+CNO、H+NCO、N+HCO、NH+CO,这些产物与实验检测到的结果相吻合.理论分析表明,反应通道CH+NO→IM6→TS8→IM7→TS9→N+HCO控制步骤的活化能最低(144.6kJ/mol),为主要反应通道.同时理论计算得到的各通道反应热与实验值一致,可以说明研究结果是比较可靠的.  相似文献   

10.
用量子化学MP2方法,在6-3ll G^**基组水平上研究了乙烯与臭氧反应机理,对乙烯的臭氧化Criegee机理进行了理论计算,全参数优化了反应过程中反应物、中间体、过渡态和产物的几何构型,在QCISD(T)/6-3ll g^**水平上计算了它们的能量,并对它们进行了振动分析,以确定中间体和过渡态的真实性,研究结果表明:乙烯与臭氧反应沿Criegee机理是最可行的,但对于CH2CH2 O3→MI→TS1→H2COO H2CO→H2CO2→H2CO→M4→TS4→P反应通道没说明,虽然相对而言该反应通道发生的可能性很小,但这条反应通道是存在的,通过研究,对乙烯臭氧化反应Criegee机理进行了补充,同时研究还发现:就乙烯与臭氧反应活性而言,乙烯与臭氧反应其控制步骤的活化能不大,也就是说乙烯与臭氧反应活性较强,它对臭氧有一定的损耗。  相似文献   

11.
用密度泛函DFT(B3LYP)方法和MP2从头算方法,在6-311G(d,p),6-311++G(d,p)基组水平上研究了CO+HO2-C02+OH,CO+NO2-CO2+NO2个反应的过渡态结构和反应机理,沿IRC分析指出反应均为协同完成的一步反应.同时计算了2个反应的活化位垒和反应焓变,并与实验估计值进行了比较.对CO与H02的反应采用MP2/6—311++G(d,p)方法,计算所得反应位垒为100.98kJ/mol,与实验估计值93.60kJ/mol基本接近,对CO与N02的反应采用B3LYP/6—311++G(d,p)方法,计算所得反应位垒为115.99kJ/mol,比实验估计值141.51kJ/mol低25.52kJ/mol.计算同时表明2个反应均为放热反应.  相似文献   

12.
用从头计算法在UHF/6 - 31G* * 水平上研究了氢过氧自由基双分子自反应的历程。优化了反应物、中间体、过渡态和产物的几何构型,通过振动分析确认了过渡态,利用GAMESS程序得到内禀反应坐标(IRC) 。研究表明,该反应是自发趋势较大的夺氢放热过程,活化势垒为112 .51kJ.mol-1 。  相似文献   

13.
采用密度泛函理论的B3LYP方法,在6-311++G(d,p)基组水平上研究了CH3CH2自由基与HNCO的微观反应机理,优化了反应过程中的反应物、中间体、过渡态和产物,为了获得更精确的能量信息,在QC ISD(T)/6-311++G(d,p)水平上计算体系在反应通道各驻点的能量.振动分析结果和IRC分析结果证实了中间体和过渡态的真实性,计算所得的成键临界点电荷密度变化也确认了反应过程.对于CH3CH2自由基与HNCO反应,找到了10条反应通道.对结果的分析表明,其中生成烷基酰亚胺稳定分子的反应通道的控制步骤活化能最低,因此为主要通道,在该反应体系中氢迁移反应已不是主要的反应过程,但其活化能不高,也是能发生的.  相似文献   

14.
用PM3方法研究了2-氯吡啶光氯化取代反应的过渡态.研究结果表明,生成2,6-二氯吡啶、2,5-二氯吡啶、2,4-二氯吡啶、2,3-二氯吡啶不同产物的每一个反应通道都存在两个过渡态;反应体系沿反应坐标的变化为反应物→反应物络合物→第1过渡态→中间体→第2过渡态→产物络合物→产物;第2过渡态为主过渡态,生成2,6-二氯吡啶反应路径主过渡态的能量及活化能最低,分别为-139612.06和135.39kJ/mol,反应优先生成2,6-二氯吡啶.生成二氯吡啶反应过程中吡啶环反应部位CCl键的形成主要与共轭双键断裂同步,而CH键的断裂主要与共轭双键的重新形成同步.  相似文献   

15.
采用量子化学UMP2方法,在6-311G基组水平上对自由基SiH3与HNCO的反应机理进行了研究,全参数优化了反应过程中的反应物、中间体、过渡态和产物,通过频率分析和内禀反应坐标(IRC)确定了中间体和过渡态.计算结果表明SiH3自由基与HNCO的反应有三条可能的反应通道,其中反应通道SiH3+HN—CO→IM2或IM3→TS2→P2(SiH3NH+CO)反应势垒最低,为主反应通道.  相似文献   

16.
CH2自由基是烃类燃烧过程中产生的重要物质,NO是主要的环境污染物.研究二之间的反应具有重要的现实意义.用从头算(ab initio)方法从理论上对CH2和NO的反应进行研究.采用G2MP2方法计算各反应通道上所有驻点的构型参数、振动频率和高级能量.根据相对能量绘制的势能剖面图详细给出了CH2和NO的反应机理。反应中,NO横向进攻CH2中心形成富能中间体H2CNO(IM1),而后经复杂的异构化或解离途径生成产物。计算的各个通道的反应热与实验结果符合较好,根据势能面,预测生成CO NH2和H HNCO是反应的主要通道,这与实验事实相一致。  相似文献   

17.
用密度泛函理论方法对C l与CH2OH自由基的反应机理进行了理论研究,在B3LYP/6-311 G(d,p)水平上计算了各驻点物种的构型参数、振动频率和能量,通过振动分析的虚频数和内禀反应坐标(IRC)计算,确认了每个过渡态.结果表明,该反应是放热反应,总焓变为-289.6KJ.mol-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号