首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将Mm(NiCoMnAl)5合金与CNTs均匀混合后机械球磨制备Mm(NiCoMnAl)5/10wt.%CNTs复合储氢合金.用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试方法研究复合合金的结构和电化学性能.结果表明:Mm(NiCoMnAl)5/10wt.%CNTs复合合金主要具有CaCu5结构,在其表面键合了众多的CNTs.随球磨时间增大,复合合金中CNTs含量逐渐减少.复合合金的最大放电容量、循环稳定性和高倍率放电性能随球磨时间的增大呈现出先增大后减小的变化规律,其中球磨时间为5h时,最大放电容量达到最大值291.9mAh/g;当球磨时间为3h时,合金电极经60次充放电循环后的容量保持率高达91.2%,且具有最佳的高倍率放电性能.  相似文献   

2.
在不同成型压力下制备了Mm(NiCoMnAl)5/5%Mg2Ni复合储氢合金电极,研究了成型压力对合金电极的活化性能、最大放电容量、放电特性、循环稳定性和高倍率放电性能的影响规律.结果表明,成型压力对合金电极的活化性能基本无影响,合金电极的最大放电容量、放电特性和循环稳定性随成型压力的增大均呈现出先增大后减小的变化规律,合金电极的高倍率放电性能随成型压力的增大而变小.综合考虑,在成型压力为11t时,合金电极展示了最佳的综合电化学性能,电化学性能的改善主要归因于合金电极的电荷转移速度的加快.  相似文献   

3.
以感应熔炼法制备的LaNi_(2.5)Co_(0.5)合金为研究对象,对该合金及其氢化物的相结构进行了分析,并对合金电极的放电容量保持率、高倍率放电性能、氢扩散系数及极化电流密度等电化学性能进行了研究.结果表明:吸氢后的合金会产生明显的非晶化现象,造成合金吸放氢能力和氢化物稳定性下降.随着循环次数的增加,合金的放电容量和高倍率放电性能均表现出先快速下降到逐渐缓慢降低的趋势,而合金的氢扩散系数和极化电流密度却呈现出不同的变化趋势.高倍率放电性能的下降主要与合金表面反应活性相关,说明表面劣化现象是造成合金电化学性能衰退的主要因素.  相似文献   

4.
研究Si和Zn元素分别部分替代Ni后合金La0.75Mg0.25Ni3.5-xMx(M=Si,Zn;x=0~0.5)的微观组织及电化学性能.X射线衍射(XRD)结果表明, La0.75Mg0.25Ni3.5-xSix合金由CaCu5型相、Ce2Ni7型相和LaMgNi4型相组成,随着Si含量增加,CaCu5型相明显增加.La0.75Mg0.25Ni3.5-xZnx合金由CaCu5型相、Ce2Ni7型相和LaNi3型相组成.随着Zn的增加,合金中Ce2Ni7型相逐渐减少,CaCu5型相和LaNi3型相则相应增加.电化学实验表明,2种元素的加入均使得合金的高倍率放电性能下降;Si的加入降低了合金最大放电容量和交换电流密度,但活化次数也随之减少,电化学循环稳定性提高.Zn元素的加入,对合金最大放电容量影响较小.  相似文献   

5.
采用放电容量、循环寿命、伏安特性、高倍率放电、交流阻抗等方法研究不同导电剂镍粉含量对La0.7Mg0.3Ni2.6Co0.7合金电极电化学性能的影响。结果表明:La0.7Mg0.3Ni2.6Co0.7+xwt%Ni(x=0.0,5.0,7.5,10.0,12.5)合金电极的放电容量分别为388.0、410.7、409.6、412.2、421.3 mAh/g,高倍率放电性能HRD1200从40.2%(x=0.0)增大到75.7%(x=12.5),同时合金电极的电荷转移阻抗明显降低,添加导电剂镍粉有利于电流在电极中分布趋于均匀化,增大了活性物质的填充量,促使合金电极的放电容量增加。电荷转移阻抗的降低有利于氢原子在合金内部扩散,从而有效地改善合金电极的高倍率放电性能。  相似文献   

6.
测定了含铬的钛锰合金吸放氢量和压力组成等温线。少量铬的加入有效地提高了不加均匀化高温热处理的钛锰合金的吸氢活性,显著地增大了吸放氢量,其吸放氢性能最优的组成为TiNn_(1.20)Cr_(0.15)—TiMn_(0.12)Cr_(0.25)。  相似文献   

7.
以(LaRMg)(NiCoAlZn)3.5(R=La、Ce、Pr、Nd、Gd、Y和Sc)合金为研究对象,研究稀土元素R部分替代La后对合金相结构和相组成及电化学性能的影响.XRD和EPMA方法分析结果表明,合金(LaRMg)(NiCoAlZn)3.5退火组织主要由Ce2Ni7型相(或Gd2Co7型)、PuNi3型相和CaCu5型相组成;Ce、Pr和Nd元素的替代对合金相组成没有明显影响,而Gd元素替代使合金中CaCu5型相明显减少,Ce2Ni7型(或Gd2Co7型)相显著增加,其相丰度达到79.03%;Y和Sc元素替代时合金中Gd2Co7型相基本消失.电化学测试和分析表明, 稀土元素R替代La后对合金电极活化性能影响不大,其中Nd、Gd、Y和Sc部分替代La在一定程度上提高合金的最大放电容量,而Gd元素替代时合金电极容量最高达到343.1 mAh/g;Gd和Nd元素部分替代La使合金电极的循环稳定性得到明显提高,S100分别达到95.3%和93.0%.此外,Sc部分替代La能有效改善合金电极的高倍率放电性能.  相似文献   

8.
在氩气保护下采用电磁感应熔炼制备La0.7Zr0.1Mg0.2Ni3.4-xCoxFe0.1(x=0.15,0.25,0.35,0.45)合金,研究合金的相结构,以及Co元素部分取代Ni元素对合金的气态储氢性能和电化学性能的影响。结果表明,合金主要由LaNi5、LaNi2以及La2MgNi9相组成。合金电极的最大放电容量分别为346.7mAh/g(x=0.15)、320.3mAh/g(x=0.25)、363.0mAh/g(x=0.35)和313.3mAh/g(x=0.45),经过65个充放电循环后,合金电极的容量保持率从63.0%(x=0.15)增加到80.2%(x=0.35),然后再下降到75.0%(x=0.45)。La0.7Zr0.1Mg0.2Ni3.15Co0.25Fe0.1合金具有较高的高倍率放电性能(HRD1200%=67.3)和较大的极限电流密度(IL=386.8 mA/g),显示出其良好的电化学动力学性能。  相似文献   

9.
采用磁悬浮感应熔炼法和快淬法制备了Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3稀土储氢合金,系统研究了快淬速度对合金微结构和电化学性能的影响.X射线衍射(XRD)及扫描电镜(SEM)分析表明,快淬态合金中出现了新相LaNi3和La2Ni3,且LaNi3和La2Ni3相含量随快淬速度的增大而增大.电化学性能测试表明,合金的放电特性和最大放电容量随快淬速度的增大呈现出先变好后变坏的变化规律,15m/s快淬态合金的放电特性和最大放电容量达到最佳.此外,恰当的快淬速度能明显改善合金的循环稳定性.  相似文献   

10.
采用高频悬浮感应熔炼方法制备(La1-xNdx)2Mg(Ni0.8Co0.15Mn0.05)9(x=0~0.3)系列合金,分析Nd部分取代La对合金的相结构、吸放氢性能和电化学性能的影响.结果表明,铸态合金的主相为具有六方CaCu5结构的LaNi5相,并存在具有立方MgCu2结构的LaNi2相以及LaMg3相.合金主相...  相似文献   

11.
利用高频感应熔炉制备摩尔比率为75%La(Ni0.85Co0.15)5-x(Mn0.4Al0.3)x+12.5%Mg2Ni(x=0,0.3,0.6)合金,测试合金的储氢性能,分析Mn、Al元素组合对合金储氢性能的影响。结果发现,合金均由多相组成,其中主相分别是CaCu5型的LaNi5相和PuNi3型的(La,Mg)Ni3相。随着元素(Mn,Al)含量增大,合金电极的循环稳定性有一定的改善,80次循环放电容量保持率从x=0时的59.1%提高到x=0.6时的74.5%。  相似文献   

12.
TiO2-ZnO光催化剂对AB5型储氢合金电化学性能的影响   总被引:1,自引:0,他引:1  
采用溶胶凝胶自燃烧法合成TiO2-ZnO光催化剂,采用XRD和SEM对其形貌结构进行表征,并将其修饰于AB5型储氢合金,制备成催化剂含量(质量分数)为10%和20%的2种光催化储氢合金电极(TZMH电极)。通过恒电流充放电、交流阻抗及阶跃电位测试研究TiO2-ZnO对AB5型储氢合金电极电化学性能的影响。研究结果表明:TiO2-ZnO催化剂成分为ZnO及ZnTiO3,平均粒径约20 nm;相对于AB5合金电极,TZMH电极活化性能和电化学容量略有下降,AB5合金电极初始活化容量为321 mA.h.g-1,10%TZMH电极和20%TZMH电极分别降至300.8 mA.h.g-1和292.9 mA.h.g-1;循环性能得到提高,AB5合金电极、10%TZMH电极和20%TZMH电极以1 C倍率循环100次的容量保持率分别为66.2%,80.0%和83.9%;10%TZMH电极紫外光照射时电荷转移电阻明显小于未受光照时的电阻,阶跃电位测试的响应电流大于未受光照时的响应电流。  相似文献   

13.
比较了各种倍率恒流充电和脉冲充电过程中N i-MH电池的温度和内压,进行了在动力电池工作荷电状态范围内的300周高倍率循环测试,并对循环前后电池正负极电位、储氢合金形貌、循环伏安特性的变化进行了研究.实验结果表明,高倍率充放电循环使电池性能下降的主要原因是负极合金性能的恶化.  相似文献   

14.
采用粉末烧结法制备La0.7Mg0.3Ni2.8Co0.5合金,并系统研究1173和1273 K下Ar保护分别烧结12 h所制备合金的微观结构与电化学性能。结果表明:合金均由(La,Mg)Ni3和LaNi52种主相所构成,1173 K条件下却含有少量MgNi2相,而1273 K条件下所制备的合金相结构中不含MgNi2相,这说明高温条件较有利于合金的合成。高温条件下所制备的合金具有较高的放电容量,且循环稳定性和高倍率放电性能均有明显的提高,电化学动力学也随制备温度的增高而改善。  相似文献   

15.
以La_2Mg_(17)作为中间合金采用熔炼法成功制备了AB_3型合金La_(0.7)Mg_(0.3)Ni_(2.875)Co_(0.525)Mn_(0.1),与球磨法制得的NiB进行不同比例的复合.对合金复合前后的电化学容量、循环寿命、高倍率放电以及电化学交流阻抗(EIS)进行了测试,结果表明储氢材料经NiB复合后,合金电极循环稳定性明显提高,但是其最高放电容量有所降低;高倍率放电能力增强,抗腐蚀性能增强.  相似文献   

16.
研究了x(Zr)及热处理工艺对LaNi(4.2+5x)Mn0.4Al0.4Zrx储氢合金微观组织与电化学性能的影响.结果表明:添加Zr元素后该储氢合金中均出现Zr(Ni,Al,Mn)5第二相,并且第二相的含量随x的增大而增多.当x=0.4时,经热处理后合金中的第二相沿主相晶界呈网状分布,而且其韧性很好.由于第二相对主相起到了防腐蚀保护作用,并降低了充放电过程中晶格畸变引起的合金粉化的速度,从而使循环稳定性显著提高,但由于第二相不是吸氢相,对电化学容量没有贡献,因此它的出现使合金的放电容量降低.  相似文献   

17.
用高频感应熔炼方法制备了La0.7Mg0.3-xTixNi2.8Co0.3(x=0.03,0.06,0.09,0.12)系列合金,并对其储氢和电化学性能进行测试.结果表明x=0.06时,合金储氢性能最好,气态储氢容量达1.2wt%,放电容量和比容量分别为336 mA.h.g-1,70.0%.  相似文献   

18.
采用大气熔炼的方法制备3种成分的Cu-Fe-P-Zn合金,并利用光学显微镜、扫描电镜和能谱分析等测试手段对合金的铸态组织及成分偏析进行了研究.结果表明:Cu-2.3Fe-0.03P-0.12Zn合金合适的均匀化处理制度为960℃保温6h.Cu-2.3Fe-(0.4~0.6)P-0.12Zn合金的铸态组织除存在明显的枝晶外,还有大量未溶解的富Fe和P的Fe2P和Fe3P相,最大粒径可达15μm.随着P含量的增加,未溶相也逐渐增多.经过960℃均匀化退火处理后,各合金的枝晶组织可基本消除,但Cu-2.3Fe-(0.4~0.6)P-0.12Zn合金的未溶相熔点高,很难通过均匀化退火来消除.模拟得到铜铁合金的均匀化动力学计算公式为:1/T=3.835×10-5 ln(1.2×10-3 t/L2).  相似文献   

19.
研究(La1-xTix)2MgNi8.25Co0.75(x=0、0.1、0.2)合金的微观结构与电化学性能。相测试结果显示:所有合金都是由(La,Mg)Ni3和LaNi52个主相所构成的,晶胞参数随着Ti的替代而逐渐减小,这是因为Ti的共价键半径(0.132 nm)小于La(0.169 nm)所引起的。电化学测试结果表明:所有的合金电极经过4次活化后都能够达到最大放电容量,且放电容量随着Ti含量的增加而减少,从x=0时的384.6 mAh/g降低到x=0.2时的321.9 mAh/g,合金电极的循环寿命则从x=0时的53.1%提高到x=0.2时的67.8%,合金在1 200 mA/g时的高倍率放电性能先从x=0时的59.3%升高到x=0.1时的66.5%,然后又降低到x=0.2时的63.1%。此外,电化学动力学也显示出先增大后减小的特点。造成以上电化学性能变化的原因是Ti的加入一方面起到了脱氢催化的作用,另一方面使合金表面形成了致密氧化层,虽然阻止了合金进一步的腐蚀,但也降低了合金电极的动力学性能。  相似文献   

20.
在Ar气保护下,采用悬浮熔炼方法制备Ml0.75 Mg0.25 Ni3.5 -xAlx(x=0.05 ~0.25)合金,系统研究Al部分取代Ni对合金的相结构、吸放氢性能和电化学性能的影响.结果表明,合金的相结构主要由具有六方CaCu5结构的(La,Pr) Ni5相、(La,Pr) Mg2Ni9相和(La,Nd)2 N...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号