首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用BP网络模型,研究了彩色图像分割和边缘检测的神经网络方法.选取训练样本图像,并分别以区域增长分割法和Sobel边缘检测方法所得结果为导师信号,将图像的特征向量采用BP算法进行训练,然后对实测图像进行分割和边缘检测.与采用区域增长法所得分割结果和采用Sobel边缘检测方法所得边缘检测结果进行比较,BP网络方法能取得同样较好的效果  相似文献   

2.
基于BP神经网络的数字图像边缘检测算法的研究   总被引:11,自引:4,他引:11  
肖锋 《西安科技大学学报》2005,25(3):372-375,382
指出了传统边缘检测算子算法的不足,提出了一种利用基于BP神经网络的数字图像边缘检测算法,即利用传统边缘检测算子检测出来的图像中像素的灰度的不同比例作为学习训练图像,进行神经网络的学习训练,改变神经网络的结构参数得到神经网络的模型参数,最后给出了BP神经网络实现图像边缘检测的实验研究结果。从实现中可发现,将人们关于边缘特征的先验知识包含在内进行数字图像的边缘检测,能够取得比较好的效果。  相似文献   

3.
用BP网络进行彩色图像分割和边缘检测   总被引:10,自引:0,他引:10  
采用BP网络模型,研究了彩色图像分割和边缘检测的神经网络方法。选取训练样本图像,并分别以区域增长分割法和Sobel边缘检测方法所得结果为导师信号,将图像的特征向量采用BP算法进行训练,然后对实测图像进行分割和边缘检测。与采用区域增长法所得分割结果和采用Sobel边缘检测方法所得边缘检测结果进行比较,BP网络方法能取得同样较好的效果。  相似文献   

4.
基于数学形态学的图像边缘检测   总被引:14,自引:0,他引:14  
讨论了图像数学形态学的基本原理及形态学在灰度图像边缘检测中的应用,并成功构造了一种新型形态边缘检测算法,该算法具有较好的抗噪和边缘提取能力.对一幅加有椒盐噪声的灰度图像的仿真试验结果表明,该方法比传统的基于模板的图像边缘检测算法和形态学常用边缘检测算法具有更好的图像边缘提取效果.  相似文献   

5.
边缘检测技术在CT图像预处理中的应用   总被引:1,自引:0,他引:1  
本文在已获取CT原始图像序列的基础上,分析了常用的图像边缘检测技术及其数据矩阵的建立。针对二维CT图像的边缘检测,提出了一种改进的基于Sobel算子的边缘提取算法,解决了影响三维重建准确性的关键性问题。  相似文献   

6.
基于改进蚁群算法的图像边缘检测   总被引:1,自引:1,他引:1  
为了克服传统基于蚁群算法的图像边缘检测存在定位不准、易陷入局部最优解、对噪声鲁棒性不佳、且收敛速度过慢等缺点,本文提出了一种基于改进蚁群算法的图像边缘检测算法,此算法以传统边缘检测算子得到的边缘信息作为启发信息,建立了基于蚁群算法的边缘追踪模型,实现了信息素和启发信息对边缘追踪的导向作用,避免了蚂蚁在非边缘区域内行走,克服了陷入局部最优的缺点,最后本文运用了条件概率建立边缘检测评价标准.实验结果表明,本文的边缘检测方法具有较好的检测精度和噪声鲁棒性,且运行速度较快.  相似文献   

7.
基于数学形态学的CT图像边缘检测方法   总被引:1,自引:0,他引:1  
针对人体颅脑CT图像的特点,运用数学形态学的理论和方法,探讨了复合型边缘检测算子及不同尺度对称形式结构元素对边缘检测的影响,并使用IDL(Interactive Data Language)完成人体颅脑CT图像边缘检测实验,取得较好效果。  相似文献   

8.
提出了一种基于改进BP网络进行人脸检测与定位的方法,采用变步长的学习速率,在加快学习速度的同时,保证了权值的稳定性;采用加动量项的BP算法,减小了权值的振荡,且可以避免网络陷入局部最小.利用图像的灰度信息对已构建好的神经网络进行训练,然后利用已训练好的神经网络进行搜索,确定被检测的窗口是否包含人脸.实验结果表明此方法比传统的人脸检测与定位方法具有更强的鲁棒性和可扩展性,定位速度快,泛化能力显著.  相似文献   

9.
在多尺度子波变换模极大值的基础上,根据图像有效边缘与噪声边缘在尺寸大小上的显著差异等特性,实现了一种按边缘尺寸按边缘尺寸小及按边缘尺寸大小自适应分块检测图像边的方法。实验表明,采用这一方法,可得到单像素宽,定位精确、抗噪声效果好的边缘图像,其效果明显优于经典的边缘检测方法。  相似文献   

10.
在图像分析和计算机视觉领域中,边缘检测技术是至关重要的环节之一,本文针对不同边缘模型,在对三种经典最优滤波器进行理论分析的基础上,通过仿真实验比较分析各自性能,为实际应用提供参考。  相似文献   

11.
讨论了多层神经网络算法缺陷,提出了一种基于改进反向传播(Back Propagation,BP)的快速入侵检测算法--IBP算法:在BP算法中的梯度下降算式中,加入一个动量项α[ω(t)-ω(t-1)],改善计算神经元 j到神经元i的级联权值;采用学习速率可变的策略;算法训练网络时采用批处理的样本输入方式.改进后的算法选取较大的学习速率η=0.5和η=0.65,并采用3层神经网络的结构,输入、输出样本是16维和15维,各进行100次独立仿真实验,结果证明可加快算法收敛速度,另外,仿真实验还证明:改进后的算法对初始权值的敏感性、网络所表现出的稳定性等都比传统算法性能优越.  相似文献   

12.
基于BP神经网络的玻璃瓶裂纹检测模型   总被引:3,自引:0,他引:3  
阐述了BP神经网络的基本原理,介绍了一种直接估算最佳隐含层节点数的方法。针对普通的玻璃瓶裂纹检测算法存在的问题,提出了一种基于BP神经网络的玻璃瓶裂纹检测模型。实验表明,该模型的检测效果与普通算法相比有了明显的提高。  相似文献   

13.
针对普通BP神经网络算法学习收敛速度慢、易造成局部极小的问题,提出一种改进的BP神经网络入侵检测方法,其采用拟牛顿的方法进行学习,即对目标矩阵求二阶导数.运用该方法能够有效提高学习速度,消除局部极小.仿真结果表明,改进的BP神经网络入侵检测方法收敛速度快,比标准的BP入侵检测方法误检率低,能够很好地提高学习效率,更加有效地检测攻击行为.  相似文献   

14.
介绍了神经网络技术在入侵检测上的应用现状及BP神经网络学习算法的原理,开发了一个基于神经网络的入侵检测系统的原型.  相似文献   

15.
基于BP神经网络的火焰识别系统   总被引:2,自引:0,他引:2  
本文提出了一种基于BP神经网络的火焰识别系统,其对火焰的各种状态进行了识别,提高了早期发现火焰的能力。实验结果表明,该方法在火焰自动识别中是一种十分有效的方法。  相似文献   

16.
基于PSO-EO算法优化的BP神经网络研究   总被引:1,自引:0,他引:1  
PSO算法优化的BP神经网络解决了其收敛速度慢或不收敛等缺点,但PSO算法本身却存在早熟和局部收敛的问题。为此引入EO算法,用EO算法与PSO算法相结合对BP神经网络进行改进。通过实验表明:EO算法与PSO算法结合优化的BP算法具有良好的收敛性和较高的预测精度,其性能优于传统的BP算法及PSO优化的BP算法。  相似文献   

17.
IntroductionDuringthedevelopmentofprospectingofthegeologyofpetroleum,itisimportanttoforecastthedistributionofgritstone,mastertheregulationofphysicalparameterinthereservesmasslevel.Especially,itismoreimportanttorecognizetorockphaseandsedimentarycircumstance.Thetraditionalmethodisusuallyqualitativeanalysisbyfetchingrockcoreandreceivingdataaboutrockcoreandrockcrumb.Asthedevelopmentofmeasurementtogeologicwell,theplentifuldataaboutgeologicwellhasbecomeatoolasresearchthesedimentaryfeatures.Combined…  相似文献   

18.
介绍了一种基于神经网络自学习PID控制器,该控制器能通过自学习不断进行适应性控制,以保证系统的输出符合实际应用的要求, 其主要特点是采用线性预测模型来近似确定控制参数,进而进行神经网络控制,仿真结果表明该方法有较好的效果。  相似文献   

19.
针对传统BP神经网络的入侵检测中,BP神经网络模型存在容易陷入局部最优、收敛速度慢、初始值随机性较大等缺点,本文提出改进天牛群算法(Beetle Swarm Optimization,BSO)用于优化BP神经网络的权值与阈值,并采用可变的感知因子及导向性的学习策略,以增强算法跳出局部最优的能力,提升算法全局寻优能力。利用天牛群算法群体智能的特点,提高BP神经网络的收敛速度。并将天牛群优化的BP神经网络模型应用于入侵检测,仿真实验结果表明优化后的BP神经网络模型能够显著提高模型的收敛速率和对入侵数据的检测率,降低误报率。  相似文献   

20.
文章针对一类非线性系统,采用加入阻尼项的权值调整BP算法,设计了基于BP算法的神经网络内模控制器,并进行了仿真,结果显示该控制器对阶跃信号和扰动均无稳态误差,对非线性环节有较好的控制效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号