共查询到18条相似文献,搜索用时 46 毫秒
1.
针对0—1背包问题,提出了一种改进的粒子群优化算法。在物品规模增大时,该算法能够有效寻找全局最优解,提高背包的空间利用率,降低背包的空置率。通过仿真实验表明,改进的粒子群优化算法在背包问题求解中具有更好的收敛性和稳定性。 相似文献
2.
3.
本文尝试把粒子群优化算法应用于0/1背包问题中,对算法模型进行适当的修改,并采用以目标函数加约束惩罚函数作为适应度函数的方法,仿真实验表明:粒子群算法在求解背包问题上结果良好。 相似文献
4.
求解任务分配问题的一种离散微粒群算法 总被引:3,自引:0,他引:3
以交通运输领域中的装卸货任务分配问题为例对任务分配问题进行数学描述,提出一种用于求解该类问题的离散微粒群算法(DPSO)。在分析基本微粒群算法的收敛性能和任务分配问题解分布情况的基础上,采用惯性权值非线性下降策略更新微粒速度,以提高算法的收敛性,并且引入一个反正切函数对基本微粒群算法的位置公式进行进一步处理,以保证解的可行性。提出的DPSO用于求解某企业铁路货运站的装卸任务,在相同实验条件下,求解同一任务分配问题,提出的改进DPSO寻优率为76%,明显高于寻优率仅为40%和4%的其他2种DPSO算法;不同规模问题的求解试验中,综合比较寻优结果和计算时间,所提DPSO算法优于枚举法和遗传算法,且计算简便,可推广用于其他任务分配问题与组合优化问题。 相似文献
5.
提出了一种求解多维0-1背包问题的混合粒子群算法,算法使用了两个主要的思想策略,即依据物品单位容积价值的高低选择物品的贪婪策略和基于二进制编码的粒子群算法.用提出的算法,对55个测试算例进行了测试,得到了全部算例的最优解.测试结果表明,提出的混合粒子群算法求解多维0-1背包问题,计算结果的优度高,时间短,是求解此问题的有效算法. 相似文献
6.
针对变长集合组合优化问题,提出了一种离散粒子群优化模型.该模型将集合的概念和运算引入粒子群优化中,定义了一个可变集合搜索空间,并重新定义了粒子的位置、速度及作用于此空间的运算规则,既保留了粒子群本身的优化特性,又体现了集合组合优化的特点.采用典型的变长集合组合优化问题——背包问题来验证此模型的性能,并与二进制粒子群优化(BPSO)算法进行了对比.结果表明,该模型具有较强的寻优能力和更高的稳定性. 相似文献
7.
经典的粒子群是一个有效的寻找连续函数极值的方法,结合遗传算法的思想提出的混合粒子群算法来解决背包问题,经过比较测试,6种混合粒子群算法的效果都比较好,特别交叉策略A和变异策略C的混合粒子群算法是最好的且简单有效的算法,并成功地运用在投资问题中。对于目前还没有好的解法的组合优化问题,很容易地修改此算法就可解决 相似文献
8.
二进制改进粒子群算法在背包问题中的应用 总被引:20,自引:2,他引:20
提出了用于求解0 1背包问题的二进制编码的粒子群算法,阐明了该算法求解背包问题的具体实现过程.为了提高粒子群算法的收敛速度,在传统的二进制编码的粒子群算法中嵌入了记忆功能.通过对其他文献中仿真实例的计算和结果比较,表明该算法在寻优能力、计算速度和稳定性方面都超过了文献中提到的遗传算法和模拟退火算法.提出的求解背包问题的二进制改进粒子群算法,同样可以应用于其他离散优化问题. 相似文献
9.
卢璥 《华侨大学学报(自然科学版)》2013,(5):516-520
针对0-1背包问题(0-1KP)的特点,以经典的速度-位移模型为基础整数编码各粒子,以混沌序列指导全局搜索,以排列的改变描述粒子的飞行.更新粒子的位置,进而提出用于求解0-1KP的整数混沌粒子群优化(ICPSO)算法.该算法由于背包容量的限制,融入到编码和粒子飞行中,因而不会在进化中产生无效的粒子,从而提高了算法的求解效率.实验结果表明:ICPSO算法简明、有效,较典型遗传算法,及粒子群算法具有更好的收敛性能和求解速度. 相似文献
10.
针对多维多选择背包问题无法在多项式时间内找到最优解, 且由于其强约束限制条件, 在求解过程中易陷入局部最优的问题, 提出一种改进的量子粒子群优化算法对该问题进行求解. 首先, 在量子粒子移动过程中, 通过判断其与下次迭代个体的位置关系确定其位置信息的可用性, 通过该信息充分保留粒子位置的多样性; 其次, 提出一种新的位置扰动方法, 避免种群陷入局部最优. 最后, 将该算法在标准数据集上进行测试, 对算法的收敛速度和运行时间进行分析, 测试结果表明, 该算法在求解准确性上得到明显提升. 相似文献
11.
标准粒子群算法能够解决各类优化问题,得到了广泛的应用,也引起很多研究人员的关注.为了提高全局搜索能力,使其不易陷入局部最优,提出了一种新的优化策略.首先,采用了佳粒子的概念,每次更新时,对所有粒子进行排序;然后,在此基础上,对所有的粒子进行评估,衡量每个粒子是否可以保留;最后,删除那些不符合保留要求的粒子,同时生成相应数目的新的粒子,以保持种群的规模,从而提高种群的整体适应性能.实验数据表明,新算法提高了算法的性能,具有更好的全局性能. 相似文献
12.
《云南民族大学学报(自然科学版)》2017,(1):60-63
针对粒子群优化算法在迭代后期容易陷入局部最优、收敛速度变慢,精度降低、计算效率变差等缺点,提出了一种改进的粒子群优化算法.此算法通过引入惯性权重来调节粒子的速度变化,动态变化的学习因子来平衡粒子的社会学习能力和自我学习能力.通过测试函数检验,结果显示该算法能够有效摆脱局部最优,整个收敛速度明显变快,精度大幅提高. 相似文献
13.
提出了一种有效的快速k近邻分类文本分类算法,即PSOKNN算法,该算法利用粒子群优化方法的随机搜索能力在训练文档集中进行有指导的全局随机搜索. 在搜索k近邻的过程中,粒子群跳跃式移动,掠过大量不可能成为k近邻的文档向量,从而可以快速找到测试样本的k个近邻. 以Reuters 21578文档集分类为例验证算法的有效性,结果表明,保持k近邻法分类精度,新算法比KNN算法降低分类时间70%. 相似文献
14.
为了解决传统粒子群算法存在早熟收敛、搜索空间受限、精度不高等问题,通过四元数理论和粒子群算法,提出了一种改进粒子群算法.该算法以树状拓扑结构为基础建立邻域结构,速度公式中分别使用粒子三部分的记忆值,即自身最佳、局部最佳及全局最佳,同时在社会部分加入以四元数为模型的三者之间关系项,这样既能记录三者单纯的比较结果,又可... 相似文献
15.
提出了一种改进的PSO(粒子群优化)算法,该算法在基本PSO算法的粒子位置更新公式中增加了一个积分控制项,积分控制项根据每个粒子的适应值决定粒子位置的变化,改善了PSO算法摆脱局部极小点的能力。另外,在该算法中粒子行为是基于个体极值中心点和全局极值点确定的,这使得粒子能够获得更多的信息量来调整自身状态。用3个基准函数对新算法进行了实验,结果表明新算法优于已有的一些改进PSO算法。 相似文献
16.
《南京理工大学学报(自然科学版)》2015,(4)
为了提高粒子群优化算法中粒子搜索最优解的效率,该文在标准粒子群优化算法的基础上,提出一种改进的粒子群优化算法。该方法通过对粒子飞行轨迹的分析,对种群中每个粒子构建了评价粒子性能差异的等级标准,并对认识系数和社会系数设计了对应的动态变化系数模型。通过引入迁徙策略,使迁徙行为随机生成的新粒子更有可能接近全局最优解,更加有利于群体搜索跳出局部最优解和寻找全局最优解。实验结果表明,与其他比较算法相比,该文提出的改进粒子群优化算法具有寻优能力强和搜索精度高等优点,测试准测上的实验数据验证了改进算法的有效性和可行性。 相似文献
17.
提出一种求解约束优化问题的改进粒子群优化算法.该算法更多地考虑了当前全局最优粒子和个体最优粒子对粒子群搜索能力的影响,对速度更新公式做了改进;然后利用修正的可行基规则来更新个体极值和全局极值,从而引导不可行粒子尽可能到达可行的区域,以增加种群的多样性和提高全局搜索能力.数值实验表明,该算法是有效、稳定且计算精度高的全局... 相似文献
18.
粒子群优化算法(Particle Swam Optimization,PSO)是一种高效,动态的优化算法,该算法比较容易实现,也无需调整太多的参数;然而算法后期收敛速度慢,最主要的是易陷入局部板值,为了改善这些缺点,学者们纷纷提出了许多改进的算法,并将其已经应用于科学和工程等多个领域。该文主要是在基本PSO的基础上进行改进,提出了一种新的改进算法-LPSO。最后通过仿真实验证实,改进后的算法在收敛速度和收敛精度上都得到了很大提高。 相似文献