首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
How animals achieve their specific body size is a fundamental, but still largely unresolved, biological question. Over the past decades, studies on the insect model system have provided some important insights into the process of body size determination and highlighted the importance of insulin/insulin-like growth factor signaling. Fat body, the Drosophila counterpart of liver and adipose tissue, senses nutrient availability and controls larval growth rate by modulating peripheral insulin signaling. Similarly, insulin-like growth factor I produced from liver and muscle promotes postnatal body growth in mammals. Organismal growth is tightly coupled with the process of sexual maturation wherein the sex steroid hormone attenuates body growth. This review summarizes some important findings from Drosophila and mammalian studies that shed light on the general mechanism of animal size determination.  相似文献   

2.
O-GlcNAcylation of proteins is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The homeostasis of O-GlcNAc cycling is regulated during cell cycle progression and is essential for proper cellular division. We previously reported the O-GlcNAcylation of the minichromosome maintenance proteins MCM2, MCM3, MCM6 and MCM7. These proteins belong to the MCM2–7 complex which is crucial for the initiation of DNA replication through its DNA helicase activity. Here we show that the six subunits of MCM2–7 are O-GlcNAcylated and that O-GlcNAcylation of MCM proteins mainly occurs in the chromatin-bound fraction of synchronized human cells. Moreover, we identify stable interaction between OGT and several MCM subunits. We also show that down-regulation of OGT decreases the chromatin binding of MCM2, MCM6 and MCM7 without affecting their steady-state level. Finally, OGT silencing or OGA inhibition destabilizes MCM2/6 and MCM4/7 interactions in the chromatin-enriched fraction. In conclusion, OGT is a new partner of the MCM2–7 complex and O-GlcNAcylation homeostasis might regulate MCM2–7 complex by regulating the chromatin loading of MCM6 and MCM7 and stabilizing MCM/MCM interactions.  相似文献   

3.
Insulin signaling regulates lifespan, reproduction, metabolic homeostasis, and resistance to stress in the adult organism. In Drosophila, there are seven insulin-like peptides (DILP1–7). Three of these (DILP2, 3 and 5) are produced in median neurosecretory cells of the brain, designated IPCs. Previous work has suggested that production or release of DILPs in IPCs can be regulated by a factor secreted from the fat body as well as by neuronal GABA or short neuropeptide F. There is also evidence that serotonergic neurons may regulate IPCs. Here, we investigated mechanisms by which serotonin may regulate the IPCs. We show that the IPCs in adult flies express the 5-HT1A, but not the 5-HT1B or 5-HT7 receptors, and that processes of serotonergic neurons impinge on the IPC branches. Knockdown of 5-HT1A in IPCs by targeted RNA interference (RNAi) leads to increased sensitivity to heat, prolonged recovery after cold knockdown and decreased resistance to starvation. Lipid metabolism is also affected, but no effect on growth was seen. Furthermore, we show that DILP2-immunolevels in IPCs increase after 5-HT1A knockdown; this is accentuated by starvation. Heterozygous 5-HT1A mutant flies display the same phenotype in all assays, as seen after targeted 5-HT1A RNAi, and flies fed the 5-HT1A antagonist WAY100635 display reduced lifespan at starvation. Our findings suggest that serotonin acts on brain IPCs via the 5-HT1A receptor, thereby affecting their activity and probably insulin signaling. Thus, we have identified a second inhibitory pathway regulating IPC activity in the Drosophila brain.  相似文献   

4.
Recent discoveries revealing that carbohydrate modifications play critical roles in a wide variety of biological processes have brought wide recognition to the field of glycobiology. Growing attention has focused on the function of unusual O-linked carbohydrate modifications such as O-fucose. O-fucose modifications have been described in several different protein contexts, including epidermal growth factor-like repeats and thrombospondin type 1 repeats. The O-fucose modifications on thrombospondin type 1 repeats have only recently been described, but the site of modification occurs in a region proposed to play a role in cell adhesion. O-fucose modifications on epidermal growth factor-like repeats have been described as important players in several signal transduction systems. For instance, Notch, a cell-surface signaling receptor required for many developmental events, bears multiple O-fucose saccharides on the epidermal growth factor-like repeat of its extracellular domain. The O-fucose moieties serve as a substrate for the β1,3 N-acetylglucosaminyltransferase activity of Fringe, a known modifier of Notch function. The alteration of O-fucose structures by Fringe influences the ability of Notch ligands to activate the receptor and provides a means to regulate Notch signaling. Thus, O-fucose and Fringe provide a clear example of how carbohydrate modifications can have direct functional consequences on the proteins they modify. RID="*" ID="*"Corresponding author.  相似文献   

5.
The ability to regulate energy balance at both the cellular and whole body level is an essential process of life. As western society has shifted to a higher caloric diet and more sedentary lifestyle, the incidence of type 2 diabetes (non-insulin-dependent diabetes mellitus) has increased to epidemic proportions. Thus, type 2 diabetes has been described as a disease of 'chronic overnutrition'. There are abundant data to support the relationship between nutrient availability and insulin action. However, there have been multiple hypotheses and debates as to the mechanism by which nutrient availability modulates insulin signaling and how excess nutrients lead to insulin resistance. One well-established pathway for nutrient sensing is the hexosamine biosynthetic pathway (HSP), which produces the acetylated aminosugar nucleotide uridine 5′-diphospho-N-acetylglucosamine (UDP-GlcNAc) as its end product. Since UDP-GlcNAc is the donor substrate for modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (O-GlcNAc), the possibility of this posttranslational modification serving as the nutrient sensor has been proposed. We have recently directly tested this model in adipocytes by examining the effect of elevated levels of O-GlcNAc on insulin-stimulated glucose uptake. In this review, we summarize the existing work that implicates the HSP and O-GlcNAc modification as nutrient sensors and regulators of insulin signaling. RID="*" ID="*"Corresponding author.  相似文献   

6.
Insulin action is initiated by binding to its cognate receptor, which then triggers multiple cellular responses by activating different signaling pathways. There is evidence that insulin receptor signaling may involve G protein activation in different target cells. We have studied the activation of G proteins in rat hepatoma (HTC) cells. We found that insulin stimulated binding of guanosine 5′-O-(3-thiotriphosphate) (GTP-γ-35S) to plasma membrane proteins of HTC cells, in a dose-dependent manner. This effect was completely blocked by pertussis toxin treatment of the membranes, suggesting the involvement of G proteins of the Gα i/Gα o family. The expression of these Gα proteins was checked by Western blotting. Next, we used blocking antibodies to sort out the specific Gα protein activated by insulin stimulation. Anti-Gα il,2 antibodies completely prevented insulin-stimulated GTP binding, whereas anti-Gα o,i3 did not modify this effect of insulin on GTP binding. Moreover, we found physical association of the insulin receptor with Gα i1,2 by copurification studies. These results further support the involvement of a pertussis toxin-sensitive G protein in insulin receptor signaling and provides some evidence of specific association and activation of Gα i1,2 protein by insulin. These findings suggest that Gα i1,2 proteins might be involved in insulin action. Received 23 September 1998; received after revision 23 November 1998; accepted 25 November 1998  相似文献   

7.
Summary 1st, 2nd, and early 3rd instarDrosophila larvae are extremely sensitive to 100% O2 or 75% O2/25% N2 (at atmospheric pressure) whereas eggs, late 3rd instar larvae, and pupae are relatively insensitive under our exposure conditions. Eclosing flies exposed to an O2 enriched environment consistently possessed 2 eye abnormalities: dark eye color and altered eye shape.Supported by NSF-URP grant SP1782684 and a Summer Faculty Fellowship to Harry Nickla.  相似文献   

8.
9.
Sphingosine 1-phosphate (S1P) is a bioactive lipid that acts through a family of G-protein-coupled receptors. Herein, we report evidence of a novel redox-based cross-talk between S1P and insulin signaling pathways. In skeletal muscle cells S1P, through engagement of its S1P2 receptor, is found to produce a transient burst of reactive oxygen species through a calcium-dependent activation of the small GTPase Rac1. S1P-induced redox-signaling is sensed by protein tyrosine phosphatase-1B, the main negative regulator of insulin receptor phosphorylation, which undergoes oxidation and enzymatic inhibition. This redox-based inhibition of the phosphatase provokes a ligand-independent trans-phosphorylation of insulin receptor and a strong increase in glucose uptake. Our results propose a new role of S1P, recognizing the lipid as an insulin-mimetic cue and pointing at reactive oxygen species as critical regulators of the cross-talk between S1P and insulin pathways. Any possible implication of S1P-directed insulin signaling in diabetes and insulin resistance remains to be established.  相似文献   

10.
Infection of bacteria triggers innate immune defense reactions in Drosophila. So far, the only bacterial component known to be recognized by the insect innate immune system is peptidoglycan, one of the most abundant constituents of the bacterial cell wall. Insects use peptidoglycan recognition proteins to detect peptidoglycan and to activate innate immune responses. Such specialized peptidoglycan receptors appear to have evolved from phage enzymes that hydrolyze bacterial cell walls. They are able to bind specific peptidoglycan molecules with distinct chemical moieties and activate innate immune pathways by interacting with other signaling proteins. Recent X-ray crystallographic studies of the peptidoglycan recognition proteins LCa, and LCx bound to peptidoglycan have provided structural insights into recognition of peptidoglycan and activation of innate immunity in insects. Received 28 December 2006; received after revision 2 February 2007; accepted 21 February 2007  相似文献   

11.
In fetal alcohol syndrome (FAS), cerebellar hypoplasia is associated with impaired insulin-stimulated survival signaling. This study characterizes ethanol dose-effects on cerebellar development, expression of genes required for insulin and insulin-like growth factor (IGF) signaling, and the upstream mechanisms and downstream consequences of impaired signaling in relation to acetylcholine (ACh) homeostasis. Pregnant Long Evans rats were fed isocaloric liquid diets containing 0%, 2%, 4.5%, 6.5%, or 9.25% ethanol from gestation day 6. Ethanol caused dose-dependent increases in severity of cerebellar hypoplasia, neuronal loss, proliferation of astrocytes and microglia, and DNA damage. Ethanol also reduced insulin, IGF-I, and IGF-II receptor binding, insulin and IGF-I receptor tyrosine kinase activities, ATP, membrane cholesterol, and choline acetyltransferase (ChAT) expression. In vitro studies linked membrane cholesterol depletion to impaired insulin receptor binding and insulin-stimulated ChAT. In conclusion, cerebellar hypoplasia in FAS is mediated by insulin/IGF resistance with attendant impairments in energy production and ACh homeostasis. Received 4 May 2006; received after revision 13 June 2006; accepted 20 June 2006  相似文献   

12.
Summary A decrease in growth rate of the antennal bud by means of colchicine deflects the differentiation of theAristopedia antenna towards an arista.

DieDrosophilamutanteAristopedia unterscheidet sich von der Wildform durch die Umwandlung der Fühlergeißel (=Arista) in einen Fuß.  相似文献   

13.
14.
PPEF/PP7 represents one of the five subfamilies of the PPP protein Ser/Thr phosphatases. Studies published in recent years point to a role of plant PP7 at a crossroad of different pathways of light and stress signalling. In animals, PPEFs are highly expressed in sensory neurons, and Drosophila PPEF phosphatase, rdgC, is essential for dephosphorylation of rhodopsin. Expression profiling suggests that mammalian PPEF may play a role in stress-protective responses, cell survival, growth, proliferation, and oncogenesis. Despite structural similarities of the catalytic domains and the fact that some of these phosphatases are involved in light perception both in animals and in plants, the plant and non-plant representatives of this group have distinct domain architecture and appear not to be orthologues.  相似文献   

15.
Sphingolipids are important structural components of membranes that delimit the boundaries of cellular compartments, cells and organisms. They play an equally important role as second messengers, and transduce signals across or within the compartments they define to initiate physiological changes during development, differentiation and a host of other cellular events. For well over a century Drosophila melanogaster has served as a useful model organism to understand some of the fundamental tenets of development, differentiation and signaling in eukaryotic organisms. Directed approaches to study sphingolipid biology in Drosophila have been initiated only recently. Nevertheless, earlier phenotypic studies conducted on genes of unknown biochemical function have recently been recognized as mutants of enzymes of sphingolipid metabolism. Genome sequencing and annotation have aided the identification of homologs of recently discovered genes. Here we present an overview of studies on enzymes of the de novo sphingolipid biosynthetic pathway, known mutants and their phenotypic characterization in Drosophila.Received 14 June 2004; received after revision 15 August 2004; accepted 21 August 2004  相似文献   

16.
O 6-methylguanine-DNA methyltransferase (MGMT) repairs the cancer chemotherapy-relevant DNA adducts, O 6-methylguanine and O 6-chloroethylguanine, induced by methylating and chloroethylating anticancer drugs, respectively. These adducts are cytotoxic, and given the overwhelming evidence that MGMT is a key factor in resistance, strategies for inactivating MGMT have been pursued. A number of drugs have been shown to inactivate MGMT in cells, human tumour models and cancer patients, and O 6-benzylguanine and O 6-[4-bromothenyl]guanine have been used in clinical trials. While these agents show no side effects per se, they also inactivate MGMT in normal tissues and hence exacerbate the toxic side effects of the alkylating drugs, requiring dose reduction. This might explain why, in any of the reported trials, the outcome has not been improved by their inclusion. It is, however, anticipated that, with the availability of tumour targeting strategies and hematopoetic stem cell protection, MGMT inactivators hold promise for enhancing the effectiveness of alkylating agent chemotherapy.  相似文献   

17.
In all complex organisms, the peripheral nerves ensure the portage of information from the periphery to central computing and back again. Axons are in part amazingly long and are accompanied by several different glial cell types. These peripheral glial cells ensure electrical conductance, most likely nuture the long axon, and establish and maintain a barrier towards extracellular body fluids. Recent work has revealed a surprisingly similar organization of peripheral nerves of vertebrates and Drosophila. Thus, the genetic dissection of glial differentiation in Drosophila may also advance our understanding of basic principles underlying the development of peripheral nerves in vertebrates.  相似文献   

18.
Summary An analysis of allozyme data from numerous sets of related vertebrate andDrosophila species shows that species divergence does not generally seem to be accompanied by an overall increase or decrease in enzyme charge. The 2 significant results came from vertebrate inter-generic comparisons.  相似文献   

19.
Summary For obtaining a better yield of established lines of embryonicDrosophila cells, insulin proved to be a useful substance to be added to the culture medium. 10% of lines became established, showing a predominatly diploid chromosome number.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号