首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
以南京长江漫滩区某超大深基坑工程为背景,根据地质和周边环境条件、基坑支护方案,对基坑开挖过程中支护结构和周边环境进行监测和分析.结果 表明:超大深基坑支护结构具有明显的空间效应,开挖深度越大,空间效应越明显;随着施工的进行,各层锚索轴力逐渐增大,其中第1层锚索轴力普遍大于第2、3层锚索轴力,第1层锚索轴力平均值为206...  相似文献   

2.
为深入研究杂填土地层深基坑桩-锚-撑组合支护体系受力特性,依托青岛市某深基坑工程开展微型桩-锚-撑原位试验,分析不同开挖工况下双排微型钢管桩桩身弯矩与预应力锚索轴力的演化规律,揭示该支护体系下前、后排桩的受力性状、预应力锚索应力分布特征,探讨邻近建筑物、基坑暴露时间及钢支撑拆除对该支护体系内力的影响。研究结果表明:1)在基坑开挖过程中,前排桩在受力中起主导作用;当开挖至基底时,桩身最大正、负弯矩极值呈现增大趋势,且极值点不断下移,开挖面以上桩身弯矩均呈正“S”型分布。2)开挖深度增加引起开挖面上、下1.0 m范围内桩身弯矩显著增大,前排桩桩身的反弯点分别位于钢支撑下方0.5 m、开挖面位置。3)在开挖过程中,锚索轴力沿埋深方向呈现减小趋势,锚固段前端1.5 m之后的轴力基本不变或呈微小波动。4)锚索锚固段应力高度集中在锚固段前端4.0 m以内的区域,约为锚固段长度的44%,锚固段末端基本未产生轴力,可对该段长度进行优化处理。5)邻近建筑物对微型钢管桩桩身受力影响较小;随着基坑暴露时间增加,桩身弯矩呈微小增长趋势;钢支撑拆除后,前排桩的弯矩变化集中在0.38H~0.96H(H为基坑开挖深...  相似文献   

3.
深基坑桩锚支护变形模拟分析   总被引:1,自引:0,他引:1  
以济南市省会文化艺术中心工程为背景,用FLAC3D数值模拟软件,对深基坑变形作了模拟分析.将模拟数据与滑动式测斜仪测得的变形监测数据进行对比分析,得出结论:在桩-锚支护体系下,基坑最大水平位移随开挖下移,最终出现在桩体的中部,靠近第二道锚索,模拟变形曲线和测斜仪监测结果吻合良好;锚索轴力最大值在端头,且中间排锚索轴力小于上下两排.  相似文献   

4.
在东北地区,冬季气温较低,土体冻结导致其体积膨胀。为探究严寒地区土体冻胀对锚索承载机理与变形稳定的影响,依托吉林大学第一医院地下停车场深基坑项目,采用Plaxis 2D软件建立二维模型,通过模拟结果与现场实测结果对比,验证模型的合理性,并进一步分析了不同条件下基坑开挖对锚索承载机理的影响。结果表明:锚索轴力随天数出现先增大后减小又增大再趋于稳定的现象,且第一、二道锚索的轴力设计值需进一步完善,第三道锚索的轴力设计值较为合理;随着基坑的开挖,锚索内力先增大而后逐步趋于稳定,结果与现场实测数据相比要略大,但整体的趋势是一致的;因开挖面受下层土体隆起与冻胀的双重作用,使基坑变形主要集中在支护结构的上部,故第二排锚索轴力值整体较大于第三排锚索;再加上另一排锚索对基坑的支护效果,导致该深度下的锚索轴力会有一个减小的现象,之后因为基坑变形逐步向基坑中部转移加上冻深加深,故该现象逐渐减小。  相似文献   

5.
为了研究地铁基坑开挖过程中围护结构的安全性,以广东省某地铁车站为工程实例.介绍了基坑开挖方法,利用MIDAS/GTS对基坑开挖过程进行了模拟,并与不同工况下的桩身位移变化和支护轴力监测进行了比较.结果表明,围护桩顶和桩底位移较小,围护桩的最大位移位置随开挖深度的变化而移动,最大位移位置逐渐下降,最大位移接近第三梁内支撑的顶部.模拟轴力结果显示:标准段距离盾构井约50 m内冠梁呈受拉状态.模拟和现场轴力监测数据显示:第一道标准段内支撑轴力大于盾构井内支撑轴力,随着开挖深度的增加,轴力最大值内支撑位置也在下移,最终出现在盾构井第三道内支撑上.  相似文献   

6.
深基坑变形规律现场监测   总被引:6,自引:0,他引:6  
给出了北京地铁某车站深基坑围护和变形监测方案,对基坑变形规律进行了现场监测研究,重点分析了基坑的水平变形、锚索内力和钢支撑轴力变化规律。结果表明,基坑开挖的深度与无支撑暴露的时间对围护桩的变形、锚索内力及钢支撑的轴力影响较大。随着基坑开挖深度的增加和钢支撑的施加,围护桩的变形形态由向坑内的前倾型曲线逐渐变为弓形。围护桩的水平位移、钢支撑的轴力也随着基坑开挖深度的增加而增大。随着钢支撑的施加,围护桩水平位移及锚索内力都趋于稳定,说明钢支撑、围护桩和预应力锚索联合支护形式能够有效地控制基坑变形,保证地铁车站安全施工。  相似文献   

7.
基坑施工过程失稳因素多,危险性较大,因此在基坑设计和施工过程中必须考虑内力和变形的发展变化问题.运用PLAXIS软件对钻孔灌注桩+三重管高压旋喷(摆喷)桩+预应力锚索支护体系支护条件下深基坑开挖过程进行模拟计算,分析了基坑水平位移、竖直位移和围护桩内力,并与实测值进行比较.结果表明,利用有限元法可以很好地模拟各开挖工况,计算出基坑的水平位移和竖直位移,围护桩和锚索的轴力、剪力和弯矩,能够形象直观地反映基坑各工况下的受力状态.  相似文献   

8.
采用交叉中隔墙(CRD)法,开挖红土地层中双线铁路隧道.通过现场量测和ANSYS有限元模拟相结合的方法,研究开挖过程中隧道的拱顶沉降、弯矩和支护轴力的变化规律.研究结果表明:CRD1开挖产生的拱顶沉降约占整体沉降为36%,拱顶下沉曲线通常为最后趋于收敛的非线性上升曲线;CRD1开挖产生的轴力约占最终轴力的42%~49%,整个开挖过程中结构的轴力基本呈非线性增大趋势.  相似文献   

9.
拉力集中型与压力分散型预应力锚索锚固机理   总被引:11,自引:0,他引:11  
利用有限差分程序FLAC对一种新型预应力锚索--压力分散型锚索的锚固机理进行了数值模拟研究.与拉力集中型预应力锚索相比,压力分散型锚索具有许多优点,尤其适用于对大变形软岩工程的锚固.对比分析结果表明:压力分散型锚索锚固段浆体轴力峰值仅为拉力集中型锚索的1/n(n为承载体的数量),且浆体处于受压状态;锚固段浆体-岩体界面上的剪力峰值也小于拉力集中型锚索,并沿内锚固段轴向均匀分布;在相同条件下,压力分散型锚索比拉力集中型锚索能提供更大的锚固力;适当增加承载体的数量是提高压力分散型锚索锚固力,改善锚固段浆体受力状态的有效途径.  相似文献   

10.
为了准确地确定锚固段长度,满足锚索工程的设计与施工。运用数值模拟方法来计算锚固段剪应力和轴力的分布规律,从而进一步确定锚固段长度。模拟结果显示:锚固段剪应力分布曲线基本呈指数函数形式分布;而锚固段轴力在始端较大,并向末端迅速衰减。对于小湾电站片麻岩质边坡预应力锚索(1 000~2 000 kN)来说,其锚固段长度初步确定为:2.5~4.5m。  相似文献   

11.
本文以某高速公路第五合同段K300+812~K300+883.5右侧预应力锚索桩板式挡土墙施工为例,从桩井开挖、钢筋笼绑扎、混凝土浇筑、预应力锚索施工及锚索轴力监控等方面,详细介绍了预应力锚索桩板墙的施工方法及质量控制要点,积累了比较丰富的施工经验,对以后的预应力锚索桩板墙施工有一定的借鉴和指导意义。  相似文献   

12.
深基坑桩锚支护的数值模拟   总被引:6,自引:0,他引:6  
对利用FLAC3D进行深基坑数值模拟时经常遇到的一个关键而又常被忽视的结构单元连接问题进行了详细探讨,阐述了结构单元的连接方法、种类与性质,利用结构单元连接理论对某一采用桩锚联合支护的深基坑开挖工程进行了模拟分析,研究了桩的最大水平位移、弯矩、内力以及锚杆轴力、附近建筑物基础底面沉降随施工过程的变化规律。指出桩的最大水平位移并不是发生在桩顶处,而是在基坑开挖到的位置附近;桩的弯矩在整个桩长范围内正负交替出现;桩的受力主要为压力,而且最大值也是出现在基坑开挖到的位置附近;锚杆轴力在端部最大,然后逐渐减小,在尾部几乎为零;附近建筑物基础在靠近基坑一端有被抬升的趋势,而另一端则有下降的趋势。  相似文献   

13.
为探究硬岩地层超深基坑桩锚支护体系随基坑开挖的受力与变形演化规律,依托于崂山区某基坑支护工程,对南侧支护完成区域基坑的预应力锚索轴力、基坑水平和竖向位移进行了实时监测,分析桩锚支护体系在该地质条件下的力学性能,探讨锚索轴力急速下降与基坑水平位移增大的影响因素。研究表明:预应力锚索轴力持续、急速的下降与基坑紧邻原状山体的土压力和北侧后挖区域的持续施工有关,工程中采取预应力锚索2次补偿张拉适用效果良好;基坑最大水平位移为19.98 mm,最大竖向位移为12.11 mm,南侧支护完成区域基坑支护体系的变形受后续施工区域的影响明显;桩锚支护体系在硬岩及土岩二元地层超深基坑中具有较好的适用性和可靠性。类似工程支护结构设计应重视周边地质环境、邻近区域持续施工等因素的影响。  相似文献   

14.
以郑州市某地铁车站的深基坑工程为研究背景,运用有限元分析软件MIDAS/GTS NX建立整体有限元模型,对基坑开挖的每步施工过程进行数值模拟。探讨了深基坑开挖过程中地连墙的水平位移、周围地表沉降及内支撑轴力分布情况,用于判定深基坑在开挖过程中的稳定性和安全性。同时分别对深基坑开挖过程中周围的建筑物沉降、墙顶水平位移和沉降及支撑轴力进行了监测,并与数值模拟值进行对比。结果表明:理论计算值与现场监控值变化趋势基本一致,结果误差不大,均在设计报警值以内;墙体水平位移随着开挖深度增加而增大,且最大的位移逐渐向下移动,土体地表沉降的变形基本随着开挖深度的增大而逐渐增大,但内支撑轴力不随开挖深度的增大而增大,而是呈现波动的变化趋势;在深基坑开挖过程中,应重点对开挖引起的对墙体变形、地面过大变形和支撑结构内力进行监测。研究结果表明监控量测与数值模拟相结合能较好地运用于基坑开挖,也可为类似基坑工程的开挖提供一定的借鉴作用。  相似文献   

15.
采用有限元分析方法,对佛山市某基坑支护工程施工工况进行模拟,分析开挖过程地表沉降、桩体水平位移及斜撑轴力的变化过程,并与现场监测数据进行对比,为斜撑基坑支护体系在深厚淤泥区的初步设计提供参考。通过单因素分析法,对斜撑斜率与斜撑间距进行了敏感性分析。结果表明:在深厚淤泥区,斜撑对基坑地表沉降的影响范围较为深远;在斜撑的作用下,桩顶水平位移增量得到了有效控制;斜撑在支护体系中承受压力作用,本工程中斜撑轴力最大值出现在本支护段最左侧,斜撑轴力最小值本支护段中间部位;在斜撑倾角增大的情况下,斜撑下方土体因为其距斜撑支撑点的距离更近,坑底隆起曲线有了明显的下降趋势;斜撑间距变化对坑底隆起的影响不大,但斜撑轴力受其影响较为明显,且两者间呈等斜率线性增长趋势。  相似文献   

16.
为了研究土岩组合二元地层超基坑受力、变形和邻近建筑沉降随基坑开挖的演化规律,依托于青岛海天中心城市综合体桩锚支护结构体系超深基坑工程,对预应力锚索轴力、基坑水平和竖向位移以及周边建筑物沉降进行了实时监测。结果表明,基坑开挖期间内,预应力锚索轴力随时间的变化规律主要分快速下降、稳定变化和基本稳定3个阶段,锚索轴力平均损失率约为15.08%;基坑最大水平位移为12.30 mm,最大竖向位移为11.01 mm,基坑临近建筑物最大沉降量为1.2 mm,远小于设计和现行《建筑基坑工程监测技术标准》的容许变形值,说明桩锚支护结构体系可以有效控制基坑变形,确保毗邻建筑物安全;同时表明该基坑的支护设计方案有较大的优化空间,从而节约工程成本。研究成果对相似地质条件的超深基坑围护结构设计具有重要参考价值。  相似文献   

17.
以某建筑深基坑工程为例,对基坑开挖各阶段上部土钉墙土钉轴力进行实测,分析并研究了基坑开挖及支护过程对土钉轴力的影响,具体考虑了基坑开挖时间与土钉轴力、土钉轴力变化速率以及同一土钉不同节点位置处轴力变化趋势之间的关系。对今后类似的基坑工程中的上部土钉墙的设计和分析提供借鉴和参考。  相似文献   

18.
以济南地铁邢村站基坑开挖支护为工程依托,通过理论分析、数值模拟和监控测量相结合的方法,首先在理论方面阐明基坑变形的理论依据,然后利用有限元软件ABAQUS对邢村站基坑开挖的全过程进行了模拟,并结合现场的监测结果,对基坑开挖过程中围护结构的水平与竖向位移和基坑周边的地表沉降以及支撑结构的轴力变化进行了分析。研究结果表明:随着基坑的开挖,基坑顶部呈现出逐渐向坑内运动的趋势,并且随着开挖过程中支撑结构的施加,围护结构整体呈现出向坑内变形的“弓”形分布,在支撑施加的部位,变形明显减小;由于基坑开挖土体的卸荷,围护结构出现隆起变形;地表沉降曲线呈现“U”形分布,并且随着基坑开挖深度的逐渐增加,地表沉降最大值逐渐增大,基坑开挖的影响范围基本在0~20 m内;各道支撑的轴力呈现出逐渐增加的趋势,下部的支撑发挥作用的效应更明显,并且下部支撑轴力大于上部支撑的轴力。  相似文献   

19.
考虑流体-结构偶联效应和悬浮隧道锚索的几何非线性特点,建立了悬浮隧道锚索非线性振动方程,并通过ANSYS有限元软件的二次编程,在时域内实现了方程求解,分析了悬浮隧道锚索在非线性横向升力作用下的动力特性。计算结果表明:锚索的轴力和锚索中部的最大位移都随锚索的预张力增加而显著下降;在非涡激振动的情况下,随均匀流速度的增加,锚索中部的最大位移有所增加,但是在涡激共振的情况下,锚索中部位移有跳跃性增加;随着锚索长度的增加,锚索中部的最大位移变小,轴力随之增加;锚索的倾斜角度对锚索的轴力和位移的影响基本一致,随角度的增加,轴力和位移均先减小,后增加。  相似文献   

20.
利用FLAC3D数值模拟软件,按照实际施工工序模拟基坑开挖支护全过程,得到了桩锚支护结构以及基坑外土体沉降和基坑侧壁水平位移随基坑开挖的变形规律:随基坑开挖深度的增加,基坑外土体沉降逐渐增大,变化曲线呈"勺状"分布;基坑顶和基坑侧壁水平位移随开挖深度增加均逐渐增大且都在开挖至基坑底时位移最大;桩身弯矩最大值处基本出现在基坑开挖深度1.5 m以上的位置,最大负弯矩值为76.7;锚索轴力最大位置出现在锚索的端头处,且从端头位置向端尾位置逐渐减小,而第1排至第3排锚索最大值逐渐增大,说明支护结构中第2、3排锚索起主要作用,验证了深基坑桩锚支护的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号