首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
Summary The activity of bacterial neuraminidases can be influenced by H2O2 secreted by some organisms. Thus, at low H2O2 concentrations (0.002–0.01%), an increase of neuraminidase activities was observed, whereas at concentrations 0.1% the enzyme activities were destroyed.  相似文献   

2.
Summary Sodium chloride at concentrations below 0.5 M, enhanced the respiratory activity (O2-consumption) ofStaphylococcus aureus under endogenous and sugar-supported conditions, but did not overcome the inhibitory action of sodium azide. Several sugars, including the glucose analoguea-methylglucoside, and their metabolites enhanced bacterial O2-consumption, but acetylmethylcarbinol was ineffective.  相似文献   

3.
Summary In this article the writer suggests an explanation for the germicide effect of compressed oxygen. The production of poisonous products of metabolism can be ignored, because the bacterial development is normal after removal of the pressure. Lack of nutritive material through inhibition of metabolism and permanent damage to the enzymes is also not a satisfactory explanation. The possibility is discussed that oxygen as an acceptor of electrones creates an ionisation of important parts of the cell and resulting in the death of the bacteria. The effect seems to be similar but weaker than that of H2O2.  相似文献   

4.
The initiator tRNA (Met-tRNA i Met ) at the P site of the small ribosomal subunit plays an important role in the recognition of an mRNA start codon. In bacteria, the initiator tRNA carrier, IF2, facilitates the positioning of Met-tRNA i Met on the small ribosomal subunit. Eukarya contain the Met-tRNA i Met carrier, eIF2 (unrelated to IF2), whose carrier activity is inhibited under stress conditions by the phosphorylation of its α-subunit by stress-activated eIF2α kinases. The stress-resistant initiator tRNA carrier, eIF2A, was recently uncovered and shown to load Met-tRNA i Met on the 40S ribosomal subunit associated with a stress-resistant mRNA under stress conditions. Here, we report that eIF2A interacts and functionally cooperates with eIF5B (a homolog of IF2), and we describe the functional domains of eIF2A that are required for its binding of Met-tRNA i Met , eIF5B, and a stress-resistant mRNA. The results indicate that the eukaryotic eIF5B–eIF2A complex functionally mimics the bacterial IF2 containing ribosome-, GTP-, and initiator tRNA-binding domains in a single polypeptide.  相似文献   

5.
The transmembrane electrochemical proton gradient generated by the redox systems of the respiratory chain in mitochondria and aerobic bacteria is utilized by proton translocating ATP synthases to catalyze the synthesis of ATP from ADP and Pi. The bacterial and mitochondrial H+-ATP synthases both consist of a membranous sector, F0, which forms a H+-channel, and an extramembranous sector, F1, which is responsible for catalysis. When detached from the membrane, the purified F1 sector functions mainly as an ATPase. In chloroplasts, the synthesis of ATP is also driven by a proton motive force, and the enzyme complex responsible for this synthesis is similar to the mitochondrial and bacterial ATP synthases. The synthesis of ATP by H+-ATP synthases proceeds without the formation of a phosphorylated enzyme intermediate, and involves co-operative interactions between the catalytic subunits.  相似文献   

6.
An efficient Escherichia coli expression system for the production of a perchloric acid-soluble protein (PSP) has been constructed. Complementary DNA encoding PSP was inserted into an inducible bacterial expression vector pGEX-4T-1. After the plasmid introduced into E. coli was expressed by isopropyl 1-thio-β-D-galactopyranoside (IPTG), the recombinant product was purified by glutathione-Sepharose 4B affinity chromatography. The purified product showed the expected NH2-terminal sequence, but the translation inhibitory activity of this product was 10 times lower compared with that of authentic PSP isolated from rat liver. Received 8 October 1998; received after revision 6 November 1998; accepted 6 November 1998  相似文献   

7.
The capacity of organisms to sense changes in the levels of internal and external gases and to respond accordingly is central to a range of physiologic and pathophysiologic processes. Carbon dioxide, a primary product of oxidative metabolism is one such gas that can be sensed by both prokaryotic and eukaryotic cells and in response to altered levels, elicit the activation of multiple adaptive pathways. The outcomes of activating CO2-sensitive pathways in various species include increased virulence of fungal and bacterial pathogens, prey-seeking behavior in insects as well as taste perception, lung function, and the control of immunity in mammals. In this review, we discuss what is known about the mechanisms underpinning CO2 sensing across a range of species and consider the implications of this for physiology, disease progression, and the possibility of developing new therapeutics for inflammatory and infectious disease.  相似文献   

8.
Bacterial nonspecific acid phosphohydrolases (NSAPs) are secreted enzymes, produced as soluble periplasmic proteins or as membrane-bound lipoproteins, that are usually able to dephosphorylate a broad array of structurally unrelated substrates and exhibit optimal catalytic activity at acidic to neutral pH values. Bacterial NSAPs are monomeric or oligomeric proteins containing polypeptide components with an M r of 25 – 30 kDa. On the basis of amino acid sequence relatedness, three different molecular families of NSAPs can be distinguished, indicated as molecular class A, B and C, respectively. Members of each class share some common biophysical and functional features, but may also exhibit functional differences. NSAPs have been detected in several microbial taxa, and enzymes of different classes can be produced by the same bacterial species. Structural and phyletic relationships exist among the various bacterial NSAPs and some other bacterial and eucaryotic phosphohydrolases. Current knowledge on bacterial NSAPs is reviewed, together with analytical tools that may be useful for their characterization. An overview is also presented concerning the use of bacterial NSAPs in biotechnology. Received 21 November 1997; received after revision 10 March 1998; accepted 10 March 1998  相似文献   

9.
Many members of the nudix hydrolase family exhibit considerable substrate multispecificity and ambiguity, which raises significant issues when assessing their functions in vivo and gives rise to errors in database annotation. Several display low antimutator activity when expressed in bacterial tester strains as well as some degree of activity in vitro towards mutagenic, oxidized nucleotides such as 8-oxo-dGTP. However, many of these show greater activity towards other nucleotides such as ADP-ribose or diadenosine tetraphosphate (Ap4A). The antimutator activities have tended to gain prominence in the literature, whereas they may in fact represent the residual activity of an ancestral antimutator enzyme that has become secondary to the more recently evolved major activity after gene duplication. Whether any meaningful antimutagenic function has also been retained in vivo requires very careful assessment. Then again, other examples of substrate ambiguity may indicate as yet unexplored regulatory systems. For example, bacterial Ap4A hydrolases also efficiently remove pyrophosphate from the 5′ termini of mRNAs, suggesting a potential role for Ap4A in the control of bacterial mRNA turnover, while the ability of some eukaryotic mRNA decapping enzymes to degrade IDP and dIDP or diphosphoinositol polyphosphates (DIPs) may also be indicative of new regulatory networks in RNA metabolism. DIP phosphohydrolases also degrade diadenosine polyphosphates and inorganic polyphosphates, suggesting further avenues for investigation. This article uses these and other examples to highlight the need for a greater awareness of the possible significance of substrate ambiguity among the nudix hydrolases as well as the need to exert caution when interpreting incomplete analyses.  相似文献   

10.
Summary I. c. v. administration of bacterial endotoxin produced a fever in the Long-Evans rat but not in the Brattleboro rat. Similar administration of arachidonic acid, prostaglandin E2, prostacyclin, dibutyryl cAMP, norepinephrine, morphine and -endorphin caused hyperthermia in both Long-Evans and Brattleboro rats. Variable doses of exogenous arginine vasopressin (AVP) when centrally administered with endotoxin caused fever in the Brattleboro rat. It is suggested that AVP may play an important role in the production and release of endogenous pyrogen.  相似文献   

11.
Mammalian protease-activated-receptor-1 and -2 (PAR1 and PAR2) are activated by proteases found in the flexible microenvironment of a tumor and play a central role in breast cancer. We propose in the present study that PAR1 and PAR2 act together as a functional unit during malignant and physiological invasion processes. This notion is supported by assessing pro-tumor functions in the presence of short hairpin; shRNA knocked-down hPar2 or by the use of a truncated PAR2 devoid of the entire cytoplasmic tail. Silencing of hPar2 by shRNA-attenuated thrombin induced PAR1 signaling as recapitulated by inhibiting the assembly of Etk/Bmx or Akt onto PAR1-C-tail, by thrombin-instigated colony formation and invasion. Strikingly, shRNA-hPar2 also inhibited the TFLLRN selective PAR1 pro-tumor functions. In addition, while evaluating the physiological invasion process of placenta extravillous trophoblast (EVT) organ culture, we observed inhibition of both thrombin or the selective PAR1 ligand; TFLLRNPNDK induced EVT invasion by shRNA-hPar2 but not by scrambled shRNA-hPar2. In parallel, when a truncated PAR2 was utilized in a xenograft mouse model, it inhibited PAR1–PAR2-driven tumor growth in vivo. Similarly, it also attenuated the interaction of Etk/Bmx with the PAR1-C-tail in vitro and decreased markedly selective PAR1-induced Matrigel invasion. Confocal images demonstrated co-localization of PAR1 and PAR2 in HEK293T cells over-expressing YFP-hPar2 and HA-hPar1. Co-immuno-precipitation analyses revealed PAR1-PAR2 complex formation but no PAR1-CXCR4 complex was formed. Taken together, our observations show that PAR1 and PAR2 act as a functional unit in tumor development and placenta-uterus interactions. This conclusion may have significant consequences on future breast cancer therapeutic modalities and improved late pregnancy outcome.  相似文献   

12.
Enterococci are commensal organisms in the alimentary tract. However, they can cause a variety of life-threatening infections, especially in nosocomial settings. We hypothesized that induction of cell death might enable these facultative pathogenic bacteria to evade the innate immune response and to cause infections of their host. We demonstrate that E. faecium when exposed to lysozyme induces cell death in macrophages in vitro and in vivo. Flow cytometric analyses of J774A.1 macrophages infected with E. faecium revealed loss of cell membrane integrity indicated by uptake of propidium iodide and decrease of the inner mitochondrial transmembrane potential ΔΨm. Inhibition of caspases, treatment of macrophages with cytochalasin D, or rifampicin did not prevent cells from dying, suggesting cell death mechanisms that are independent of caspase activation, bacterial uptake, and intracellular bacterial replication. Characteristics of necrotic cell death were demonstrated by both lack of procaspase 3 activation and cell shrinkage, electron microscopy, and release of lactate dehydrogenase. Pretreatment of E. faecium with lysozyme and subsequently with broad spectrum protease considerably reduced cell death, suggesting that a bacterial surface protein is causative for cell death induction. Moreover, in a mouse peritonitis model we demonstrated that E. faecium induces cell death of peritoneal macrophages in vivo. Altogether, our results show that enterococci, under specific conditions such as exposure to lysozyme, induce necrotic cell death in macrophages, which might contribute to disseminated infections by these facultative pathogenic bacteria.  相似文献   

13.
Riassunto Sono misurate le velocità di reazione della lisozima con 0.05M ditiotreitolo, HSCH2CH2OH, (HSCH2CH2COO) e H2SCH2CH2NH2 in tampone borace di pH 10 e in alcune altre concentrazioni e pH. La cinetica della reazione col ditiotreitolo è differente da quella con HSCH2CH2OH e viene data una interpretazione di questo fenomeno.

This work was aided by a grant and a Career Development Award (to G.G.) from the National Institutes of Health, U.S. Public Health Service.  相似文献   

14.
Primary neurons undergo insult-dependent programmed cell death. We examined autophagy as a process contributing to cell death in cortical neurons after treatment with either hydrogen peroxide (H2O2) or staurosporine. Although caspase-9 activation and cleavage of procaspase-3 were significant following staurosporine treatment, neither was observed following H2O2 treatment, indicating a non-apoptotic death. Autophagic activity increased rapidly with H2O2, but slowly with staurosporine, as quantified by processing of endogenous LC3. Autophagic induction by both stressors increased the abundance of fluorescent puncta formed by GFP-LC3, which could be blocked by 3-methyladenine. Significantly, such inhibition of autophagy blocked cell death induced by H2O2 but not staurosporine. Suppression of Atg7 inhibited cell death by H2O2, but not staurosporine, whereas suppression of Beclin 1 prevented cell death by both treatments, suggesting it has a complex role regulating both apoptosis and autophagy. We conclude that autophagic mechanisms are activated in an insult-dependent manner and that H2O2 induces autophagic cell death.  相似文献   

15.
Biological nitrogen fixation involves the reduction of atmospheric N2 to ammonia by the bacterial enzyme nitrogenase. In legume-rhizobium symbioses, the nitrogenase-producing bacteria (bacteroids) are contained in the infected cells of root nodules within which they are enclosed by a plant membrane to form a structure known as the symbiosome. The plant provides reduced carbon to the bacteroids in exchange for fixed nitrogen, which is exported to the rest of the plant. This exchange is controlled by plant-synthesised transport proteins on the symbiosome membranes. This review summarises our current understanding of these transport processes, focusing on ammonia and amino acid transport. Received 5 June 2000; revised 13 July 2000; accepted 14 July 2000  相似文献   

16.
The protective effect of high density lipoproteins (HDL) against atherosclerosis is mainly attributed to their capacity to transport excess cholesterol from peripheral tissues back to the liver for further elimination into the bile, a process called reverse cholesterol transport (RCT). Recently, the importance of the P2Y13 receptor (P2Y13-R) was highlighted in HDL metabolism since HDL uptake by the liver was decreased in P2Y13-R deficient mice, which translated into impaired RCT. Here, we investigated for the first time the molecular mechanisms regulating cell surface expression of P2Y13-R. When transiently expressed, P2Y13-R was mainly detected in the endoplasmic reticulum (ER) and strongly subjected to proteasome degradation while its homologous P2Y12 receptor (P2Y12-R) was efficiently targeted to the plasma membrane. We observed an inverse correlation between cell surface expression and ubiquitination level of P2Y13-R in the ER, suggesting a close link between ubiquitination of P2Y13-R and its efficient targeting to the plasma membrane. The C-terminus tail exchange between P2Y13-R and P2Y12-R strongly restored plasma membrane expression of P2Y13-R, suggesting the involvement of the intra-cytoplasmic tail of P2Y13-R in expression defect. Accordingly, proteasomal inhibition increased plasma membrane expression of functionally active P2Y13-R in hepatocytes, and consequently stimulated P2Y13-R-mediated HDL endocytosis. Importantly, proteasomal inhibition strongly potentiated HDL hepatic uptake (>200 %) in wild-type but not in P2Y13-R-deficient mice, thus reinforcing the role of P2Y13-R expression in regulating HDL metabolism. Therefore, specific inhibition of the ubiquitin–proteasome system might be a novel powerful HDL therapy to enhance P2Y13-R expression and consequently promote the overall RCT.  相似文献   

17.
Summary Concomitant administration of prostaglandins E2 (PGE2) and F2 a(PGF2 a) with a carcinogen, 3-methylcholanthrene (MCA) to mice for 2 months markedly enhanced the occurrence of squamous cell carcinomas. Only epidermal cell hyperplasia occurred in mice treated with MCA alone by that time. Radioactivity measurements and electron microscopic autoradiography revealed that prostaglandins stimulate DNA, RNA and protein synthesis in neoplastic cells. These findings indicate that PGE2 and PGF2 a can act as cocarcinogens on skin tumorigenesis.  相似文献   

18.
Zusammensetzung des Borax-Puffers Stammlösung A: Borsäure H3BO3MG 61,83, 0,2M=12,3 g/l 50 Teile Stammlösung B: Natriumborat NaBO2–4 H2O, MG 137,86 0,2M=27,57 g/l 50 TeileSusammenselzung des Sörensen-Puffers Sörensen-Puffer (nachSchnedl für Bandfärbung M/15 KH2PO4/Na2HPO4 mit einem pH von 6,8). KH2PO4 MG=136,09–1/15M=20,41 g/l Na2HPO4·2H2O MG=177,99–1/15M=26,69 g/l.Der Gehalt an Methylen Violet Bernthsen in Giemsalösung ist von Bedeutung und kann durch leichtes Aufkochen aktiviert werden.
Simple chromosome banding technique for farm animal investigations
Summary For routine cytogenetic investigations, a simple banding technique on chromosomes is described. Used on different cell material, avisible banding appearance is produced which makesthe typing of chromosomes precise and fast. On 2 examples of cattle and rabbit chromosomes, the identification of a centric fusion and a trisomic is shown.
  相似文献   

19.
We determined characteristics of rat liver mitochondrial fractions, resolved at 1000 (M1), 3000 (M3), and 10,000 g (M10) after 2 and 10 days cold exposure. In all groups, the M1 fraction exhibited the highest oxidative capacity, oxidative damage, H2O2 production rate, and susceptibility to stress conditions, and the lowest antioxidant levels. Cold exposure increased cytochrome oxidase activity in all fractions and succinate-supported O2 consumption in the M1 and M10 fractions during state 3 and state 4 respiration, respectively. With succinate, the H2O2 release rate increased in all fractions during state 4 and state 3 respiration, whereas with pyruvate/malate, it increased only during state 4 respiration. Increases in tissue mitochondrial proteins caused a faster H2O2 flow from the mitochondrial to cytosolic compartment, which was limited by the reduction in the M1 fraction. Despite increased liposoluble antioxidant levels, cold also caused enhanced oxidative damage and susceptibility to oxidative challenge and Ca2+-induced swelling in all fractions. These changes leading to elimination of H2O2-overproducing mitochondria avoided excessive tissue damage. We propose that triiodothyronine, whose levels increase in the cold environment, brings about the biochemical changes producing oxidative damage and those limiting its extent.Received 16 July 2004; received after revision 27 September 2004; accepted 18 October 2004  相似文献   

20.
Summary The space-group of Cu(NH3)4SO4·H2O isD 2h 16 orD 2h 13 (D 2h 5 , D 2h 1 ) with a=7,07, b=12,12, c=10,66 Å ± 1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号