首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light-quality regulation of freezing tolerance in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
  相似文献   

2.
Mitochondrial DNA (mtDNA) mutations are thought to have a causal role in many age-related pathologies. Here we identify mtDNA deletions as a driving force behind the premature aging phenotype of mitochondrial mutator mice, and provide evidence for a homology-directed DNA repair mechanism in mitochondria that is directly linked to the formation of mtDNA deletions. In addition, our results demonstrate that the rate at which mtDNA mutations reach phenotypic expression differs markedly among tissues, which may be an important factor in determining the tolerance of a tissue to random mitochondrial mutagenesis.  相似文献   

3.
Root tip contact with low-phosphate media reprograms plant root architecture   总被引:19,自引:0,他引:19  
Plant roots are able to sense soil nutrient availability. In order to acquire heterogeneously distributed water and minerals, they optimize their root architecture. One poorly understood plant response to soil phosphate (P(i)) deficiency is a reduction in primary root growth with an increase in the number and length of lateral roots. Here we show that physical contact of the Arabidopsis thaliana primary root tip with low-P(i) medium is necessary and sufficient to arrest root growth. We further show that loss-of-function mutations in Low Phosphate Root1 (LPR1) and its close paralog LPR2 strongly reduce this inhibition. LPR1 was previously mapped as a major quantitative trait locus (QTL); the molecular origin of this QTL is explained by the differential allelic expression of LPR1 in the root cap. These results provide strong evidence for the involvement of the root cap in sensing nutrient deficiency, responding to it, or both. LPR1 and LPR2 encode multicopper oxidases (MCOs), highlighting the essential role of MCOs for plant development.  相似文献   

4.
We identified a duplication of the MYB oncogene in 8.4% of individuals with T cell acute lymphoblastic leukemia (T-ALL) and in five T-ALL cell lines. The duplication is associated with a threefold increase in MYB expression, and knockdown of MYB expression initiates T cell differentiation. Our results identify duplication of MYB as an oncogenic event and suggest that MYB could be a therapeutic target in human T-ALL.  相似文献   

5.
6.
To identify renally expressed genes that influence risk for hypertension, we integrated expression quantitative trait locus (QTL) analysis of the kidney with genome-wide correlation analysis of renal expression profiles and blood pressure in recombinant inbred strains derived from the spontaneously hypertensive rat (SHR). This strategy, together with renal transplantation studies in SHR progenitor, transgenic and congenic strains, identified deficient renal expression of Cd36 encoding fatty acid translocase as a genetically determined risk factor for spontaneous hypertension.  相似文献   

7.
8.
9.
Genome-wide genetic changes during modern breeding of maize   总被引:3,自引:0,他引:3  
Jiao Y  Zhao H  Ren L  Song W  Zeng B  Guo J  Wang B  Liu Z  Chen J  Li W  Zhang M  Xie S  Lai J 《Nature genetics》2012,44(7):812-815
The success of modern maize breeding has been demonstrated by remarkable increases in productivity over the last four decades. However, the underlying genetic changes correlated with these gains remain largely unknown. We report here the sequencing of 278 temperate maize inbred lines from different stages of breeding history, including deep resequencing of 4 lines with known pedigree information. The results show that modern breeding has introduced highly dynamic genetic changes into the maize genome. Artificial selection has affected thousands of targets, including genes and non-genic regions, leading to a reduction in nucleotide diversity and an increase in the proportion of rare alleles. Genetic changes during breeding happen rapidly, with extensive variation (SNPs, indels and copy-number variants (CNVs)) occurring, even within identity-by-descent regions. Our genome-wide assessment of genetic changes during modern maize breeding provides new strategies as well as practical targets for future crop breeding and biotechnology.  相似文献   

10.
《Nature genetics》2008,40(11):1261
Recent progress in mapping quantitative growth traits (QTL s) in rice yields insights into mechanisms of plant growth, hints at genomic signatures of the domestication process and promotes the prospect of agricultural improvement via introgression of beneficial variants.  相似文献   

11.
Mutations in genes encoding ribosomal proteins cause the Minute phenotype in Drosophila and mice, and Diamond-Blackfan syndrome in humans. Here we report two mouse dark skin (Dsk) loci caused by mutations in Rps19 (ribosomal protein S19) and Rps20 (ribosomal protein S20). We identify a common pathophysiologic program in which p53 stabilization stimulates Kit ligand expression, and, consequently, epidermal melanocytosis via a paracrine mechanism. Accumulation of p53 also causes reduced body size and erythrocyte count. These results provide a mechanistic explanation for the diverse collection of phenotypes that accompany reduced dosage of genes encoding ribosomal proteins, and have implications for understanding normal human variation and human disease.  相似文献   

12.
13.
Leukocyte adhesion deficiency II (LAD II) is characterized by the lack of fucosylated glycoconjugates, including selectin ligands, causing immunodeficiency and severe mental and growth retardation. No deficiency in fucosyltransferase activities or in the activities of enzymes involved in GDP-fucose biosynthesis has been found. Instead, the transport of GDP-fucose into isolated Golgi vesicles of LAD II cells appeared to be reduced. To identify the gene mutated in LAD II, we cloned 12 cDNAs from Caenorhabditis elegans, encoding multi-spanning transmembrane proteins with homology to known nucleotide sugar transporters, and transfected them into fibroblasts from an LAD II patient. One of these clones re-established expression of fucosylated glycoconjugates with high efficiency and allowed us to identify a human homolog with 55% identity, which also directed re-expression of fucosylated glycoconjugates. Both proteins were localized to the Golgi. The corresponding endogenous protein in LAD II cells had an R147C amino acid change in the conserved fourth transmembrane region. Overexpression of this mutant protein in cells from a patient with LAD II did not rescue fucosylation, demonstrating that the point mutation affected the activity of the protein. Thus, we have identified the first putative GDP-fucose transporter, which has been highly conserved throughout evolution. A point mutation in its gene is responsible for the disease in this patient with LAD II.  相似文献   

14.
15.
We demonstrate here the importance of interleukin signalling pathways in cognitive function and the normal physiology of the CNS. Thorough investigation of an MRX critical region in Xp22.1-21.3 enabled us to identify a new gene expressed in brain that is responsible for a non-specific form of X-linked mental retardation. This gene encodes a 696 amino acid protein that has homology to IL-1 receptor accessory proteins. Non-overlapping deletions and a nonsense mutation in this gene were identified in patients with cognitive impairment only. Its high level of expression in post-natal brain structures involved in the hippocampal memory system suggests a specialized role for this new gene in the physiological processes underlying memory and learning abilities.  相似文献   

16.
Li Y  Fan C  Xing Y  Jiang Y  Luo L  Sun L  Shao D  Xu C  Li X  Xiao J  He Y  Zhang Q 《Nature genetics》2011,43(12):1266-1269
Increasing crop yield is one of the most important goals of plant science research. Grain size is a major determinant of grain yield in cereals and is a target trait for both domestication and artificial breeding(1). We showed that the quantitative trait locus (QTL) GS5 in rice controls grain size by regulating grain width, filling and weight. GS5 encodes a putative serine carboxypeptidase and functions as a positive regulator of grain size, such that higher expression of GS5 is correlated with larger grain size. Sequencing of the promoter region in 51 rice accessions from a wide geographic range identified three haplotypes that seem to be associated with grain width. The results suggest that natural variation in GS5 contributes to grain size diversity in rice and may be useful in improving yield in rice and, potentially, other crops(2).  相似文献   

17.
Growing evidence supports the hypothesis that narcolepsy with cataplexy is an autoimmune disease. We here report genome-wide association analyses for narcolepsy with replication and fine mapping across three ethnic groups (3,406 individuals of European ancestry, 2,414 Asians and 302 African Americans). We identify a SNP in the 3' untranslated region of P2RY11, the purinergic receptor subtype P2Y?? gene, which is associated with narcolepsy (rs2305795, combined P = 6.1 × 10?1?, odds ratio = 1.28, 95% CI 1.19-1.39, n = 5689). The disease-associated allele is correlated with reduced expression of P2RY11 in CD8(+) T lymphocytes (339% reduced, P = 0.003) and natural killer (NK) cells (P = 0.031), but not in other peripheral blood mononuclear cell types. The low expression variant is also associated with reduced P2RY11-mediated resistance to ATP-induced cell death in T lymphocytes (P = 0.0007) and natural killer cells (P = 0.001). These results identify P2RY11 as an important regulator of immune-cell survival, with possible implications in narcolepsy and other autoimmune diseases.  相似文献   

18.
19.
The brachyolmias constitute a clinically and genetically heterogeneous group of skeletal dysplasias characterized by a short trunk, scoliosis and mild short stature. Here, we identify a locus for an autosomal dominant form of brachyolmia on chromosome 12q24.1-12q24.2. Among the genes in the genetic interval, we selected TRPV4, which encodes a calcium permeable cation channel of the transient receptor potential (TRP) vanilloid family, as a candidate gene because of its cartilage-selective gene expression pattern. In two families with the phenotype, we identified point mutations in TRPV4 that encoded R616Q and V620I substitutions, respectively. Patch clamp studies of transfected HEK cells showed that both mutations resulted in a dramatic gain of function characterized by increased constitutive activity and elevated channel activation by either mechano-stimulation or agonist stimulation by arachidonic acid or the TRPV4-specific agonist 4alpha-phorbol 12,13-didecanoate (4alphaPDD). This study thus defines a previously unknown mechanism, activation of a calcium-permeable TRP ion channel, in skeletal dysplasia pathogenesis.  相似文献   

20.
Loeys-Dietz syndrome (LDS) associates with a tissue signature for high transforming growth factor (TGF)-β signaling but is often caused by heterozygous mutations in genes encoding positive effectors of TGF-β signaling, including either subunit of the TGF-β receptor or SMAD3, thereby engendering controversy regarding the mechanism of disease. Here, we report heterozygous mutations or deletions in the gene encoding the TGF-β2 ligand for a phenotype within the LDS spectrum and show upregulation of TGF-β signaling in aortic tissue from affected individuals. Furthermore, haploinsufficient Tgfb2(+/-) mice have aortic root aneurysm and biochemical evidence of increased canonical and noncanonical TGF-β signaling. Mice that harbor both a mutant Marfan syndrome (MFS) allele (Fbn1(C1039G/+)) and Tgfb2 haploinsufficiency show increased TGF-β signaling and phenotypic worsening in association with normalization of TGF-β2 expression and high expression of TGF-β1. Taken together, these data support the hypothesis that compensatory autocrine and/or paracrine events contribute to the pathogenesis of TGF-β-mediated vasculopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号