首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The pineal has been identified as a major circadian pacemaker within the circadian system of a number of lower vertebrates although other pacemaking sites have been implicated as well. The rhythmic synthesis and secretion of the pineal hormone, melatonin, is suggested as the mechanism by which the pineal controls circadian oscillators located elsewhere. Both light and temperature cycles can entrain the pineal melatonin rhythm. The pineal, therefore, acts as a photo and thermoendocrine transducer which functions to synchronize internal cycle with cycles in the environment. A model is presented which portrays the pineal as a major component of a multioscillator circadian system and which suggests how these multiple circadian clocks are coupled to each other and to cycles of light and temperature in the external world.  相似文献   

2.
H Underwood 《Experientia》1990,46(1):120-128
The pineal has been identified as a major circadian pacemaker within the circadian system of a number of lower vertebrates although other pacemaking sites have been implicated as well. The rhythmic synthesis and secretion of the pineal hormone, melatonin, is suggested as the mechanism by which the pineal controls circadian oscillators located elsewhere. Both light and temperature cycles can entrain the pineal melatonin rhythm. The pineal, therefore, acts as a photo and thermoendocrine transducer which functions to synchronize internal cycle with cycles in the environment. A model is presented which portrays the pineal as a major component of a 'multioscillator' circadian system and which suggests how these multiple circadian clocks are coupled to each other and to cycles of light and temperature in the external world.  相似文献   

3.
The melatonin rhythm: both a clock and a calendar   总被引:24,自引:0,他引:24  
The paper briefly reviews the data which shows that the circadian production and secretion of melatonin by the pineal gland can impart both daily, i.e., clock, and seasonal, i.e., calendar, information to the organism. The paper summarizes the 3 patterns of nocturnal melatonin production that have been described. Clearly, regardless of the pattern of nocturnal melatonin production a particular species normally displays, the duration of nightime elevated melatonin is proportional to the duration of the night length. Since daylength under natural conditions changes daily the melatonin rhythm, which adjusts to the photoperiod sends time of year information to the organism. The melatonin receptors which subserve the clock message sent by the pineal gland in the form of a melatonin cycle may reside in the biological clock itself, namely, the suprachiasmatic nuclei (SCN). The melatonin receptors that mediate seasonal changes in reproductive physiology are presumably those that are located on the pars tuberalis cells of the anterior pituitary gland. Besides these receptors which likely mediate clock and calendar information, melatonin receptors have been described in other organs. Interestingly, the distribution of melatonin receptors is highly species-specific. Whereas the clock and calendar information that the melatonin cycle imparts to the organism relies on cell membrane receptors, a fact that is of some interest considering the high lipophilicity of melatonin, recent studies indicate that other functions of melatonin may require no receptor whatsoever.  相似文献   

4.
Summary The pineal gland is a universal feature of vertebrate organization and has been implicated in the control of rhythmic adaptations to daily and seasonal cycles. This paper considers three aspects of pineal function; the generation of a rhythmical endocrine signal (the nocturnal synthesis of melatonin) and the use of the signal in the regulation of circadian and photoperiodic functions. The shape of the nocturnal signal is determined by an interaction of afferent neural control and biochemical processes intrinsic to the pinealocyte. The nature of the effect of the signal upon circadian systems is unclear, and in adult mammals may not be a specific, direct influence upon the entrainment pathways of the oscillator. In the foetus, strong evidence exists for a physiological role of the maternal melatonin signal as a true internal zeitgeber, remnants of which may persist in the adult. Photoperiodic time measurement in adult and foetal mammals is critically dependent upon the melatonin signal. Indirect evidence indicates that several neural systems may be involved in the response to melatonin and consistent with this, a variety of central melatonin binding sites have been identified in the brain and pituitary. The intra-cellular actions of melatonin and the properties of melatonin responsive neural systems have yet to be identified, but in the context of photoperiodic time measurement, it is clear that the neural responses to melatonin are not dependent upon the circadian clock. The two central effects of melatonin; photoperiodic time measurement and circadian entrainment are probably mediated through completely separate mechanisms.The Editors wish to thank Dr M. Hastings for coordinating this multi-author review.  相似文献   

5.
Summary The pineal of lower vertebrates characteristically contains true and modified photoreceptors with functional und structural homologies to retinal photoreceptors. Afferent nerves convey photic information from the pineal to sensory areas of the brain stem. Light also influences synthetic activity within the organ, controlling the rhythm in melatonin production which is generated endogenously. The molecular mechanisms underlying this rhythmic event are described and the hypothesis advanced that the pineal transduces several forms of environmental stimulus involved in the regulation of rhythmic function.  相似文献   

6.
A melatonin rhythm was observed in the pineals of 18-day-old chick embryos incubated under a light-dark regime of 186 h. A low pineal melatonin content was found during the light phase of the day. Concentrations started to increase 2 h after dark onset and reached maximum levels after 4 h of darkness. The amplitude of the pineal melatonin rhythm increased considerably after 2 days and night-time concentrations in 20-day-old embryos were more than 5 times higher than in 18-day-old ones. Significant day/night differences in melatonin production were found both in pineals and eyes. Exposure of eggs to 1 h of light during the dark period decreased the high melatonin concentrations in the eyes but not in the pineals of the 20-day-old chick embryo. The results suggest that in this precocial bird at least part of the circadian system may already operate during embryonic life.  相似文献   

7.
Summary The pineal gland of newborn elephant seals and Weddell seals is larger than in adult females. The gland is considerably larger at birth in Weddell seals than in elephant seals. The former experience greater extremes of temperature. Plasma melatonin concentrations in excess of 2000 pg/ml were recorded in the first days of life, compared with 20–50 pg/ml in adults.Acknowledgment. We thank members of the Australian National Antarctic Research Expedition to Macquarie Island for assistance with collection of elephant seal samples, in particular G. Burns, D. Carroll, G. Copson, R. Ledingham and S. Pye. The support of the National Science Foundation, USA, and personnel at the United States Antarctic Research Program base at McMurdo Sound, Antarctica, are gratefully acknowledged. The Tasmanian National Parks and Wildlife Service kindly issued permits to collect specimens at Macquarie Island.  相似文献   

8.
Summary Male Djungarian hamsters, reared under long (16L/8D) or short (10L/14D) days, were sacrificed at various ages during the day or night, or at night following a 30-min light pulse. The pineal melatonin rhythm matured similarly under long and short days by 20 days of age. The results are discussed in context of the hypothesis that melatonin mediates the photoperiod effects which forestall puberty in short-day reared hamsters.Supported by NIH research grant HD-05481.  相似文献   

9.
10.
Summary Hypophysectomy in adult male rats greatly attenuated the nocturnal rise in both pineal N-acetyltransferase (NAT) activity and melatonin content. High nighttime levels of NAT and melatonin were not restored by treating the animals with either prolactin or growth hormone, alone or in combination. Treating intact rats with bromocriptine, which depresses circulating prolactin levels, also was without effect on pineal melatonin synthesis. It appears that neither prolactin nor growth hormone are of major importance in determining pineal melatonin production.  相似文献   

11.
Summary Wistar rats show a circadian variation in their response to stress. Pinealectomy exacerbates stress-induced gastric ulceration in rats. This effect is counteracted by melatonin administration.  相似文献   

12.
Summary House sparrows,Passer domesticus, exhibit circadian rhythms of perch-hopping behavior. The rhythm was abolished by ad libitum administration of melatonin in the drinking water.Support was provided to S. Binkley by NSF PCM 8314331.  相似文献   

13.
Vitamin B12 (methylcobalamine) was administered orally (3 mg/day) to 9 healthy subjects for 4 weeks. Nocturnal melatonin levels after exposure to bright light (ca. 2500 lx) were determined, as well as the levels of plasma melatonin over 24 h. The timing of sleep was also recorded. Vitamin B12 was given blind to the subjects and crossed over with placebo. We found that the 24-h melatlonin rhythm was significantly phase-advanced (1.1. h) in the vitamin B12 trial as compared with that in the placebo trial. In addition, the 24-h mean of plasma melatonin level was much lower in the vitamin B12 traial than with the placebo. Furthermore, the nocturnal melatonin levels during bright light exposure were significantly lower in the vitamin B12 trial than with the placebo. On the other hand, vitamin B12 did not affect the timing of sleep. These findings raise the possibility that vitamin B12 phase-advances the human circadian rhythm by increasing the light sensitivity of the circadian clock.  相似文献   

14.
Summary To investigate a possible central neural influence on nocturnal pineal metabolic activity, frontal transsections of the stria medullaris thalami were conducted. Enzymes involved in melatonin synthesis, i.e. N-acetyltransferase and hydroxyindole-O-methyl-transferase, exhibited reduced activities in operated animals when compared to controls. These results indicate a modulatory role of central structures on noctural pineal indole metabolism.This study was supported by the Deutsche Forschungsgemeischaft and the Stifung Volkswagenwerk. The technical assistance provided by M. Henschel, I. v. Graevenitz and G. Schlich is gratefuly acknowledged.  相似文献   

15.
Asexual planarians of the speciesDugesia dorotocephala exhibit a distinct circadian rhythm of fissoning (asexual reproduction) under the influence of normal photoperiod; fissioning occurs only at night. This rhythm is broken down by continuous illumination, continuous darkness or by decapitation. The fissioning rate increases when planarians are exposed to light for less than 1 hour/day or when they are decapitated. Fissioning of decapitated planarians is suppressed by continuous treatment with melatonin, whereas fissioning resumes when these are returned to normal culture water. Interestingly, fissioning occurs at night when decapitates are treated with melatonin in the daytime, while it is observed in the daytime with night-time melatonin treatment. Endogenous melatonin was detected by HPLC and RIA. The endogenous melatonin level is always higher in those heads collected in the scotophase than in those collected in the photophase. A type of neurosecretory cell, which may synthesize melatonin, is found in the assembly of photoreceptor cells.  相似文献   

16.
While the production of melatonin in higher vertebrates occurs in other organs and tissues besides the pineal, the contribution of extrapineal sites of melatonin synthesis such as the retina, the Harderian glands and the gut to circulating melatonin levels is still a matter of debate. The amount of melatonin found in the gastrointestinal tract is much higher than in any other organ including the pineal and the gut appears to make a significant contribution to circulating melatonin at least under certain conditions. The gut has been identified to be the major source of the elevated plasma concentrations of melatonin seen after tryptophan administration and of the changes of circulating melatonin level induced by the feeding regime. Whereas the circadian and circannual fluctuations of the concentration of melatonin in the blood seem to be triggered by changes of the photoenvironment and its effect of pineal melatonin formation, basal daytime melatonin levels and the extent of their elevation at nighttime appear to be additionally controlled by nutritional factors, such as the amount and the composition of ingested food and therefore availability of tryptophan as a rate-limiting precursor of melatonin formation by the enterochromaffin cells of the gastrointestinal tract.  相似文献   

17.
Summary Bright light (2000–3000 lux) of sufficient intensity to suppress human melatonin secretion, acts as a strong zeitgeber in the entrainment of circadian rhythms in man. In polar conditions, light of this intensity is not experienced for several weeks during the winter. The entrainment of human circadian rhythms, in particular that of melatonin, is clearly of interest in these circumstances. Urinary 6-hydroxy melatonin sulphate (aMT6s) is a good index of melatonin secretion in man. In a limited study of seven male volunteers living on an Antarctic base the overall 24-h rhythm of aMT6s excretion was maintained at four different times of year (spring, summer, autumn and winter) and no significant seasonal effects were noted. Cortisol excretion, appeared to be markedly affected by the season although other factors such as social and environmental stress cannot be discounted. These observations suggest that in the absence of a strong light-dark cycle melatonin production may be entrained by other factors.  相似文献   

18.
19.
Melatonin from the retina and the pineal gland functions in neuroendocrine hierarchies. Photoreceptors — eyes and extraretinal — detect light. Oscillators — pineal and suprachiasmatic nuclei — act as pacemakers. Driven neuroendocrine rhythms carry temporal hormone signals throughout the body. Light controls melatonin: light sets the phase of the melatonin rhythm and determines the duration of melatonin synthesis. By these means, circadian rhythms (e.g. in locomotor activity and body temperature) and seasonal rhythms (e.g. in reproduction) are controlled.  相似文献   

20.
Summary Four days following an 8-h advance of the light-dark cycle, the circadian rhythms in the pineal N-acetyltransferase activity and melatonin content reappeared in 7-week-old rats, but were still abolished in 24-month-old animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号