首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chronic gestational exposure to ethanol has profound adverse effects on brain development. In this regard, studies using in vitro models of ethanol exposure demonstrated impaired insulin signaling mechanisms associated with increased apoptosis and reduced mitochondrial function in neuronal cells. To determine the relevance of these findings to fetal alcohol syndrome, we examined mechanisms of insulin-stimulated neuronal survival and mitochondrial function using a rat model of chronic gestational exposure to ethanol. In ethanol-exposed pups, the cerebellar hemispheres were hypoplastic and exhibited increased apoptosis. Isolated cerebellar neurons were cultured to selectively evaluate insulin responsiveness. Gestational exposure to ethanol inhibited insulin-stimulated neuronal viability, mitochondrial function, Calcein AM retention (membrane integrity), and GAPDH expression, and increased dihydrorosamine fluorescence (oxidative stress) and pro-apoptosis gene expression (p53, Fas-receptor, and Fas-ligand). In addition, neuronal cultures generated from ethanol-exposed pups had reduced levels of insulin-stimulated Akt, GSK-3β, and BAD phosphorylation, and increased levels of non-phosphorylated (activated) GSK-3β and BAD protein expression. The aggregate results suggest that insulin-stimulated central nervous system neuronal survival mechanisms are significantly impaired by chronic gestational exposure to ethanol, and that the abnormalities in insulin signaling mechanisms persist in the early postnatal period, which is critical for brain development. Received 21 January 2002; received after revision 28 February 2002; accepted 25 March 2002  相似文献   

2.
Alzheimer’s disease (AD) is a neurodegenerative disorder associated with cognitive and behavioral dysfunction and is the leading cause of dementia in the elderly. Several studies have implicated molecular and cellular signaling cascades involving the serine-threonine kinase, glycogen synthase kinase β(GSK-3β) in the pathogenesis of AD. GSK-3β may play an important role in the formation of neurofibrillary tangles and senile plaques, the two classical pathological hallmarks of AD. In this review, we discuss the interaction between GSK-3β and several key molecules involved in AD, including the presenilins, amyloid precursor protein, tau, and β-amyloid. We identify the signal transduction pathways involved in the pathogenesis of AD, including Wnt, Notch, and the PI3 kinase/Akt pathway. These may be potential therapeutic targets in AD. Received 19 December 2005; received after revision 24 January 2006; accepted 6 February 2006  相似文献   

3.
The splenomegaly and the appearance of a significant number of CFU-E (erythroid colony-forming units) and BFU-E1 (erythroid burst-forming units) in the Belgrade laboratory rat (b/b) spleen prompted us to analyse further the molecular evidence for increased hematopoietic proliferation in the b/b spleen. Messenger RNAs (mRNAs) specific for globins, proteins for iron transport and deposition and the band 3 protein were used in rat erythropoietic tissues as markers for proliferation and erythroid differentiation. In the b/b spleen, all mRNAs analysed display an erythroid-specific pattern of expression. This analysis also revealed an enhanced level of mRNA for ferritin in the +/b spleen, whereas erythrocyte-specific mRNA production was normal.  相似文献   

4.
Leptin, the ob gene product, is an adipocyte-secreted hormone that centrally regulates weight by decreasing caloric intake and increasing energy expenditure. Expression of leptin is regulated by dietary status, insulin, glucocorticoids and catecholamines. Pancreastatin (PST), a chromogranin A-derived peptide, correlates with catecholamine levels, and may play a role in the physiology of stress, modulating endocrine secretion and metabolism. Thus, PST has been found to exert a lipolytic and anti-insulin effect in white adipocytes. The aim of the present work was to investigate a possible role of PST modulating the expression of key genes involved in lipid storage and metabolism: leptin, PPAR-2, UCP-1 and UCP-2. We incubated isolated rat epididymal adipocytes with 100 nM PST for 16 and 24 h. Leptin, UCP-2 and UCP-1 mRNA levels were assessed by RT-PCR, followed by Southern blot. Leptin secretion was also measured by ELISA. PST inhibited leptin expression and secretion at 16-h incubation, but this effect was no longer observed after 24 h. On the other hand, PST stimulated the expression of UCP-2 after 16 h. However, the effect was still significant after 24 h. The inhibitory effect of PST on leptin expression and secretion and the stimulation of UCP-2 expression were prevented by blocking PKC. UCP-1 and PPR-2 expression did not change after PST stimulation. Leptin differentially regulates the expression of key genes in the rat adipocyte, upregulating the expression of UCP-2 and inhibiting the expression and secretion of leptin by a mechanism that involves PKC activity. These effects may contribute to the metabolic action of catecholamines in physiological and pathophysiological conditions with increased sympathetic activity.Received 5 September 2003; received after revision 6 October 2003; accepted 14 October 2003  相似文献   

5.
Aluminium in Alzheimer’s disease: are we still at a crossroad?   总被引:4,自引:0,他引:4  
Aluminium, an environmentally abundant non-redox trivalent cation has long been implicated in the pathogenesis of Alzheimers disease (AD). However, the definite mechanism of aluminium toxicity in AD is not known. Evidence suggests that trace metal homeostasis plays a crucial role in the normal functioning of the brain, and any disturbance in it can exacerbate events associated with AD. The present paper reviews the scientific literature linking aluminium with AD. The focus is on aluminium levels in brain, region-specific and subcellular distribution, its relation to neurofibrillary tangles, amyloid beta, and other metals. A detailed mechanism of the role of aluminium in oxidative stress and cell death is highlighted. The importance of complex speciation chemistry of aluminium in relation to biology has been emphasized. The debatable role of aluminium in AD and the cross-talk between aluminium and genetic susceptibility are also discussed. Finally, it is concluded based on extensive literature that the neurotoxic effects of aluminium are beyond any doubt, and aluminium as a factor in AD cannot be discarded. However, whether aluminium is a sole factor in AD and whether it is a factor in all AD cases still needs to be understood.Received 22 July 2004; received after revision 3 September 2004; accepted 16 September 2004  相似文献   

6.
The formation of amyloid fibrils is associated with several devastating diseases in humans and animals, including e.g. Alzheimers disease (AD) and the spongiform encephalopathies. Here, we review and discuss the current knowledge on two amyloid peptides: lung surfactant protein C (SP-C) and the amyloid -peptide (A), implicated in human lung disease and in AD, respectively. Both these hydrophobic peptides are derived from the transmembrane region of their precursor protein, and can transit from a monomeric -helical state to a -sheet fibril. The helices of SP-C and A are composed of amino acid residues with inherently higher propensities for strand than helix conformation. Their helical states are stabilized by a membrane environment, and loss of membrane association thus promotes structural conversion and fibril formation. We speculate that the loss of structural context for sequences with a high propensity for formation of sheets may be a common feature of amyloid formation in general.Received 9 July 2003; received after revision 15 August 2003; accepted 3 September 2003  相似文献   

7.
The inherited -hemoglobinopathies (sickle cell disease and thalassemia) are the result of a mutation in the adult () globin gene. The fetal globin chain, encoded by the globin genes, can substitute for the mutated or defective globin chain, but expression of the globin gene is developmentally inactivated prior to birth. Reinducing expression of the normal fetal globin genes is a preferred method of ameliorating sickle cell disease and the thalassemias. Stimulation of as little as 4–8% fetal globin synthesis in the bone marrow can produce >20% fetal hemoglobin in the peripheral circulation, due to enhanced survival of red blood cells containing both sickle and fetal hemoglobin, compared to those containing sickle hemoglobin alone. Butyric acid and butyrate derivatives are generally safe compounds which induce fetal hemoglobin production by stimulating the promoter of the fetal globin genes. An initial trial with the parent compound, delivered as Arginine Butyrate, has demonstrated rapid stimulation of fetal globin expression to levels that have been shown to ameliorate these conditions. Phase 1 trials of an oral butyrate derivative with a long plasma half-life have just begun. These agents now provide a specific new apporach for ameliorating these classic molecular disorders and merit further investigation in larger patient populations.  相似文献   

8.
Summary IL-6/IFN-2 appears to be one of the important mediators of the response to viral and bacterial infections and to shock. The biological effects now associated with IL-6/IFN-2 include: stimulation of immunoglobulin secretion by mature B lymphocytes (BSF-2 activity), growth stimulation of plasmacytomas and hybridomas (HGF activity), activation of T cells, stimulation of hepatic acute phase protein synthesis (HSF activity), stimulation of hematopoiesis, cell differentiation (DIF activity), inhibition of tumor cell growth (AP activity) and other IFN-like effects. As a typical cytokine, IL-6/IFN-2 is secreted by many cell types and acts in various combinations with other interleukins and interferons.  相似文献   

9.
The increased incidence of obesity and related disorders in Western societies requires a thorough understanding of the adipogenic process. Data at the protein level of this process are scarce. Therefore we performed a proteome analysis of differentiating and starving 3T3-L1 cells using two-dimensional gel electrophoresis combined with mass spectrometry. Effects of different starvation conditions were examined by subjecting 3T3-L1 adipocytes to caloric restriction, either in the absence or the presence of the lipolysis inducer tumor necrosis factor-. Ninety-three differentially expressed proteins were found during differentiation and starvation of 3T3-L1 cells, 50 of which were identified. GenMAPP/MAPP-finder software revealed a non-reciprocal regulation of the glycolytic pathway during 3T3-L1 differentiation followed by starvation. Furthermore, proteins involved in growth regulation, cytoskeletal rearrangements and protein modification, 16 of which have not been described before in 3T3-L1 cells, were identified. In conclusion, our data provide valuable information for further understanding of the adipogenic process.Received 9 November 2004; received after revision 21 December 2004; accepted 28 December 2004  相似文献   

10.
Transfection of sense cDNA of N-acetylglucosamyltransferase V (GnTV-S) into human H7721 hepatocarcinoma cells resulted in an increase in the N-acetylglucosamine1,6mannose1,3- branch (GnT-V product) on the N-glycans of epidermal growth factor (EGF) receptor (EGFR), and promotion of its EGF binding and tyrosine autophosphorylation, but showed little effect on the expression of EGFR protein. The phosphorylation at T308, S473 and tyrosine residue(s) and the activity of protein kinase B (Akt/PKB) as well as the phosphorylation of p42/44 mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK) before and after EGF stimulation were concomitantly increased. Conversely, in the antisense GnT-V (GnTV-AS)-transfected H7721 cells, all the results were the reverse of those with GnTV-S-transfected cells. After the cells were treated with 1-deoxymannojirimycin, an inhibitor of N-glycan processing at high mannose, or antibody against the extracellular glycan domain of EGFR, the differences in PKB activity, p42/44 MAPK and MEK phosphorylation among GnTV-S-, GnTV-AS- and mock-transfected cells were significantly attenuated. These findings indicate that the altered expression of GnT-V will change the glycan structure and function of EGFR, which may modify downstream signal transduction.Received 24 March 2004; received after revision 1 May 2004; accepted 25 May 2004  相似文献   

11.
Alzheimer disease (AD), while chronic and progressive with an average progression of 7 – 10 years, is both multifactorial and heterogeneous. Thus, AD offers a large window of opportunity and a large number of therapeutic targets to inhibit it. The selection of a therapeutic target, however, is one of the biggest challenges in developing a pharmacological treatment of this multifactorial disease. Inhibition of a pivotal downstream event is likely to benefit more patients than inhibition of an upstream event in AD pathogenesis. Neurofibrillary degeneration of abnormally hyperphosphorylated tau offers such a pivotal therapeutic target. Abnormal hyperphosphorylation of tau and not its aggregation into filaments appears to be the most deleterious step in neurofibrillary degeneration. Tau can be abnormally hyperphosphorylated by downregulation of protein phosphatase-2A activity or by upregulation of more than one tau kinase. Restoration of the phosphatase activity which is downregulated in AD brain or inhibition of GSK-3β and cdk5, which are required for AD-type abnormal hyperphosphorylation of tau, are among the most promising therapeutic strategies.  相似文献   

12.
Tauopathies are a group of neurodegenerative diseases characterised by intracellular deposits of the microtubule-associated protein tau. The most typical example of a tauopathy is Alzheimer’s disease. The importance of tau in neuronal dysfunction and degeneration has been demonstrated by the discovery of dominant mutations in the MAPT gene, encoding tau, in some rare dementias. Recent developments have shed light on the significance of tau phosphorylation and aggregation in pathogenesis. Furthermore, emerging evidence reveals the central role played by tau pre-mRNA processing in tauopathies. The present review focuses on the current understanding of tau-dependent pathogenic mechanisms and how realistic therapies for tauopathies can be developed. Received 3 December 2006; received after revision 23 February 2007; accepted 20 March 2007  相似文献   

13.
14.
Elemene is a natural antitumor plant drug. However, the effect of elemene on cell growth in ovarian cancer is unknown. In this study, we show that -elemene inhibited the proliferation of cisplatin-resistant human ovarian cancer cells and their parental cells, but had only a marginal effect in human ovary cells, indicating differential inhibitory effects on cell growth between ovarian cancer cells and normal ovary cells. We also demonstrated for the first time that -elemene markedly enhanced cisplatin-induced growth inhibition in resistant cells compared to sensitive cells. In addition, cell cycle analysis revealed a synergistic effect of -elemene and cisplatin on the induction of cell cycle G2-M arrest in our resistant ovarian carcinoma cells. Furthermore, we showed that treatment of these cells with both drugs downregulated cyclin B1 and Cdc2 expression, but elevated the levels of p53, p21waf1/cip1, p27kip1 and Gadd45. Finally, the combination of -elemene and cisplatin was found to increase the phosphorylation of Cdc2 and Cdc25C, which leads to a reduction in Cdc2-cyclin B1 activity. These novel findings suggest that -elemene sensitizes chemoresistant ovarian carcinoma cells to cisplatin-induced growth suppression partly through modulating the cell cycle G2 checkpoint and inducing cell cycle G2-M arrest, which lead to blockade of cell cycle progression.Received 19 January 2005; accepted 5 February 2005  相似文献   

15.
Glycogen synthase kinase-3β (GSK-3β) is a serine-threonine kinase implicated in multiple processes and signaling pathways. Its dysregulation is associated with different pathological conditions including Alzheimer’s disease (AD). Here we demonstrate how changes in GSK-3β activity and/or levels regulate the production and subsequent secretion of fractalkine, a chemokine involved in the immune response that has been linked to AD and to other different neurological disorders. Treatment of primary cultured neurons with GSK-3β inhibitors such as lithium and AR-A014418 decreased full-length fractalkine in total cell extracts. Opposite effects were observed after neuron transduction with a lentiviral vector overexpressing the kinase. Biotinylation assays showed that those changes mainly affect the plasma membrane-associated form of the protein, an observation that positively correlates with changes in the levels of its soluble form. These effects were confirmed in lithium-treated wild type (wt) mice and in GSK-3β transgenic animals, as well as in brain samples from AD patients, evident as age-dependent (animals) or Braak stage dependent changes (humans) in both the membrane-bound and the soluble forms of the protein. Further immunohistochemical analyses demonstrated how GSK-3β exerts these effects by affecting the trafficking of the chemokine from the Golgi to the plasma membrane, in different and opposite ways when the levels/activity of the kinase are increased or decreased. This work provides for the first time a mechanism linking GSK-3β and fractalkine both in vitro and in vivo, with important implications for neurological disorders and especially for AD, in which levels of this chemokine might be useful as a diagnostic tool.  相似文献   

16.
Summary The prothoracic glands of a variety of insects were tested for their ability to synthesize ecdysteroids in vitro. More specifically, they were evaluated for their ability to produce 3-dehydroecdysone and ecdysone using both radioimmunoassay and reverse phase high performance liquid chromatography. Three categories of insect prothoracic glands were noted: a) those producing much more 3-dehydroecdysone than ecdysone; b) glands synthesizing almost equivalent amounts of each of these two ecdysteroids; c) prothoracic glands that yielded more ecdysone than 3-dehydroecdysone. In addition, the 3-oxoecdysteroid 3-reductase activity of the hemolymph of these insects was evaluated for its ability to convert 3-dehydroecdysone to ecdysone. The lepidopteran species tested yielded the most potent enzyme activity, although activity was demonstrated in members of other orders. These data indicate that the dehydroecdysone-ecdysone axis is not restricted to moths and butterflies.  相似文献   

17.
The relationship between hormones and Alzheimers disease (AD) has been intensely researched. While the majority of this work has focused on the sex steroids, estrogens, and more recently androgens, a serendipitous patient encounter led one of us (R.L.B.) to question whether other hormones of the hypothalamic-pituitary-gonadal axis might play a role in the pathogenesis of AD. The age-related decline in reproductive function results in a dramatic decrease in serum estrogen and testosterone concentrations and an equally dramatic compensatory increase in serum gonadotropin concentrations. Indeed, there is growing evidence that the gonadotropin luteinizing hormone, which regulates serum estrogen and testosterone concentrations, is an important causative factor in the development of AD. This review provides information supporting the gonadotropin hypothesis. We put forth a novel mechanism of how changes in serum luteinizing hormone concentrations could contribute to the pathogenesis of AD and discusses potential therapeutic anti-gonadotropin compounds.  相似文献   

18.
Reduced hepatic expression levels of bromodomain-containing protein 7 (BRD7) have been suggested to play a role in the development of glucose intolerance in obesity. However, the molecular mechanism by which BRD7 regulates glucose metabolism has remained unclear. Here, we show that BRD7 increases phosphorylation of glycogen synthase kinase 3β (GSK3β) in response to activation of the insulin receptor-signaling pathway shortly after insulin stimulation and the nutrient-sensing pathway after feeding. BRD7 mediates phosphorylation of GSK3β at the Serine 9 residue and this effect on GSK3β occurs even in the absence of AKT activity. Using both in vitro and in vivo models, we further demonstrate that BRD7 mediates phosphorylation of ribosomal protein S6 kinase (S6K) and leads to increased phosphorylation of the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and, therefore, relieves its inhibition of the eukaryotic translation initiation factor 4E (eIF4E). However, the increase in phosphorylation of 4E-BP1 with BRD7 overexpression is blunted in the absence of AKT activity. In addition, using liver-specific BRD7 knockout (LBKO) mice, we show that BRD7 is required for mTORC1 activity on its downstream molecules. These findings show a novel basis for understanding the molecular dynamics of glucose metabolism and suggest the unique function of BRD7 in the regulation of glucose homeostasis.  相似文献   

19.
20.
Interconversion between cortisone and the glucocorticoid receptor ligand cortisol is carried out by 11-hydroxysteroid dehydrogenase (11-HSD)isozymes and constitutes a medically important example of pre-receptor control of steroid hormones. The enzyme 11-HSD type 1 (11-HSD1) catalyzes the conversion of cortisone to its active receptor-binding derivative cortisol, whereas 11-HSD type 2 performs the reverse reaction. Specific inhibitors against the type 1 enzyme lower intracellular levels of glucocorticoid hormone, with an important clinical application in insulin resistance and other metabolic disorders. We report here on the in vitro oxysterol-metabolizing properties of human and rodent 11-HSD1. The enzyme, either as full-length, membrane-attached, or as a transmembrane domain-deleted, soluble form, mediates exclusively conversion between 7-ketocholesterol and 7-hydroxycholesterol with similar kcat values as observed with glucocorticoid hormones. Thus, human, rat, and mouse 11-HSD1 have dual enzyme activities like the recently described 7-hydroxysteroid dehydrogenase/11-hydroxysteroid dehydrogenase from hamster liver, but differ fundamentally from the latter in that 7-OH rather than 7-OH dehydrogenase constitutes the second activity. These results demonstrate an enzymatic origin of species differences in 7-oxysterol metabolism, establish the origin of endogenous 7-OH cholesterol in humans, and point to a possible involvement of 11-HSD1 in atherosclerosis.Received 30 December 2003; received after revision 16 February 2004; accepted 16 February 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号