首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 795 毫秒
1.
基于应力偶流体模型的动载轴承润滑研究   总被引:3,自引:0,他引:3  
针对实际应用中的润滑油大多为含有高分子添加剂的应力偶流体 ,基于应力偶流体模型对动载轴承的润滑性能进行了数值计算。推导了动载情况下应力偶流体润滑的Reynolds方程 ,利用该模型求解了动载轴承的压力分布 ,比较了牛顿流体和应力偶流体对轴承承载力、轴心轨迹和摩擦系数所产生的不同影响。结果表明 :添加剂的分子链越长 ,应力偶效应越明显 ,并且越有利于提高动载轴承的承载力 ,增大油膜厚度 ,减小摩擦系数  相似文献   

2.
考虑瞬态冲击和弹性变形的滑动轴承特性与动力学响应   总被引:1,自引:1,他引:1  
同时考虑瞬态冲击载荷和轴瓦的弹性变形,模拟了舰船在风浪拍击时推进轴支承滑动轴承的润滑特性与动力学响应,研究了聚四氟乙烯(PTFE)弹性金属塑料瓦滑动轴承的最小油膜厚度、最大油膜压力和轴心轨迹随时间的变化情况。运用有限元法求解雷诺方程,将油膜力转化为轴瓦节点力计算了弹性变形;用欧拉法求解轴颈的动力学方程,计算了动态轴心轨迹。对比了刚性瓦与PTFE弹塑瓦滑动轴承的特性,结果表明,轴瓦弹性变形对油膜厚度和油膜压力分布的影响不可忽略,并且轴瓦弹性变形可以提高滑动轴承的承载能力。对比分析了4个不同方向瞬态冲击载荷作用下PTFE弹塑瓦滑动轴承的特性和轴颈的动态轴心轨迹,提出可通过改变轴承静载荷方向、减小瞬态冲击载荷方向与轴承偏心方向的夹角来增加最小油膜厚度,降低最大油膜压力,减小动态轴心轨迹的位移响应振幅,进而改善滑动轴承润滑状态,减小轴瓦的弹性变形量,提高轴承-转子系统的稳定性。  相似文献   

3.
对于高速、动载、径向滑动轴承的油膜压力及轴心轨迹的计算,一般沿用Hahu或Holland 的分项计算方法.将挤压油膜压力与旋转油膜压力分别计算,然后叠加.可是,对于重载轴承,油膜压力的峰值较高,轴承的弹性变形不可忽视,润滑油的粘压效应亦较突出.这时,雷诺方程将成为一个非线性微分方程,不能沿用上述方法计算.本文应用等参数有限元法,系统地提出了一个整体的计算方法,预示了动载轴承的油膜压力、轴心轨迹和最小油膜厚度.为了符合变形的真实情况,本文对轴承的变形,尤其是两端的影响,在运用半无限空间弹性体的结论时,也作了适当的修正.  相似文献   

4.
联立求解三维瞬态雷诺方程、轴颈的运动方程、考虑油膜和轴瓦的三维瞬态温度及油膜压力和温度对润滑油粘度的影响,得到了在受到冲击载荷后的径向轴承的瞬态性能。结果表明,受到冲击载荷后,轴心会在新位置重新稳定下来,各性能参数也重新达到平衡,达到平衡的时间与冲击载荷的大小基本无关;轴心的运动轨迹范围随着冲击载荷的增大而增大;润滑油膜和轴瓦的热传导惯性影响着油膜温度的变化,从而影响轴承最小油膜厚度和最高油膜压力。  相似文献   

5.
内燃机主轴承弹性流体动力润滑计算分析   总被引:3,自引:0,他引:3  
建立了内燃机主轴承弹性流体动力润滑计算的数学模型和有限元模型.依此模型,对某四缸柴油机的5个主轴承进行了计算,分别算出其在一个工作周期内的油膜压力、油膜厚度、摩擦功耗和轴心轨迹.通过对计算结果的分析表明,第3号主轴承所受到的载荷最小,平均油膜厚度最小,平均油膜压力和摩擦功耗最大.第3号主轴承的润滑状况不佳.应对其进行摩擦学优化设计.  相似文献   

6.
本文考虑了滑动轴承的温粘效应,在忽略油膜温度沿轴向的变化和泊肃叶流项后,建立了滑动轴承的一维温度场模型及其控制方程,采用有限元法求解一维温度场控制方程,得到了油膜温度场和粘度场的分布。将此一维温度场的计算结果与二维温度场的计算结果进行比较,发现二者非常接近,故验证了一维温度场模型的正确性,接着研究了滑动轴承参数对温度场和粘度场的影响。基于此,运用变分原理和分离变量法求解了广义Reynolds方程,得到了油膜压力分布,并且研究了轴承参数对润滑特性的影响,同时也比较了温粘效应和等温条件下的油膜力,从比较结果看出,温粘效应对轴承的油膜压力分布有较大影响,由于温粘效应的存在使得滑动轴承的承载力有所降低。  相似文献   

7.
针对传统非耦合分析方法无法研究轴颈、油膜与轴瓦之间的相互作用以及普通流-固耦合方法无法真实反应轴承运转工况的问题,提出了一种融合计算流体动力学、流-固耦合和热流耦合的瞬态分析方法,分析了时变条件下轴承系统速度、压力和温度的多物理场耦合,并分析了空化现象的影响,精确计算了恒定载荷下的偏心率和温升场,以及从启动到稳定过程的轴心轨迹.同时,分别考虑腔结构、轴颈转速和载荷对油膜压力、偏心率、温升和气穴的影响,并将计算结果与相关文献的实验结果进行比较.结果表明:所得计算结果与实验结果较吻合;轴承的轴心轨迹呈螺旋形;油腔数目对轴心轨迹、气穴和温升的影响很大.  相似文献   

8.
滑动轴承在动载荷作用下的瞬态特性是制约其精度和速度的重要因素,建立动载荷作用下滑动轴承的计算模型,计算在单、双向阶跃载荷作用下轴心轨迹的运动状态,分析阶跃载荷对轴心轨迹、最大油膜压力及最小油膜厚度等轴承主要工作参数的影响。结果表明:轴承在突变阶跃载荷作用下,轴心位置、最大油膜压力及最小油膜厚度等均呈现振荡过程,收敛于新的平衡位置;当突变载荷过大时,将造成轴承碰撞或失稳。  相似文献   

9.
发动机主轴承EHD分析研究   总被引:1,自引:0,他引:1  
建立了主轴承EHD(弹性流体动力润滑)的有限元仿真模型,基于有限元法与有限差分法对不同转速下主轴承润滑特性进行了仿真,研究了不同转速下内燃机主轴承EHD载荷、弯矩、油膜厚度、油膜压力、摩擦功耗以及机油流量的变化规律。研究结果表明:随着转速的升高,最大载荷下降,平均载荷上升,最小油膜厚度值增加,油膜压力减小,液动摩擦功耗逐升高,粗糙接触摩擦功耗减小,机油流量增加。  相似文献   

10.
为分析局部磨损和空化效应对径向滑动轴承混合润滑性能的影响,基于平均Reynolds方程及JFO空化边界条件建立了计入局部磨损的轴承混合润滑模型,通过数值求解研究了不同磨损深度对轴承油膜厚度分布、平均流体动压力分布、轴心位置和Stribeck曲线的影响。结果表明:局部磨损显著改变了油膜厚度分布和平均流体动压力分布;大磨损深度导致轴心位置改变,偏离原来设计;小磨损深度降低了轴承混合润滑阶段的摩擦系数,且能以更低的速度从混合润滑过渡到流体动压润滑;摩擦系数随着磨损深度的增加而增大。  相似文献   

11.
考虑热效应的轴颈倾斜轴承润滑分析   总被引:1,自引:0,他引:1  
文章考虑了润滑油粘温效应的影响,分析了稳态下倾斜轴颈径向滑动轴承的流体动力润滑特性.采用有限差分法求解Reynolds方程,用热平衡方程计算润滑油温升;在是否考虑温度影响的2种情况下,计算了不同轴承偏心率、轴颈倾斜方位和轴颈倾斜角时轴承的油膜压力、油膜反力、端泄流量、温度的变化、轴颈摩擦系数和保持轴承稳定工作的力矩.分析结果表明,轴颈倾斜和润滑油粘温效应对滑动轴承流体动力润滑特性有较大影响.  相似文献   

12.
研究了应力偶对有限长滑动轴承热流体动力特性的影响。推出了基于应力偶流体模型的油膜能量方程 ,并与应力偶流体的 Reynolds方程、轴瓦热传导方程一起联立数值求解 ,得到油膜的压力分布 ,油膜及轴瓦的温度分布 ,比较了 Newton流体和应力偶流体对轴承压力分布、温度分布及轴承承载力所产生的不同影响。结果表明 :应力偶流体在明显增大油膜压力的同时 ,也使轴承最大温度略有升高  相似文献   

13.
基于瞬态流场计算的滑动轴承静平衡位置求解   总被引:2,自引:0,他引:2  
将计算流体动力学与动网格法应用于滑动轴承静平衡位置的求解,通过采用全新的变流域动网格技术,在瞬态流场计算的基础上提出一种静平衡位置求解方法。在求解过程中考虑油膜发散区内气穴的存在,并与其他油膜边界条件进行比较。通过流场分析计算不同静载荷、轴承结构、油膜间隙和轴颈旋转速度下的静平衡位置。数值计算表明:滑动轴承的静平衡位置与轴颈初始位置无关;随着静载荷的变化,静平衡位置点呈半圆分布;静平衡位置的坐标和迭代轨迹可以用来分析不同速度下不同轴承结构的稳定性;对于多油楔轴承,顶隙对静平衡位置的影响要大于侧隙。  相似文献   

14.
考虑轴承热效应的转子非线性运动瞬态分析   总被引:2,自引:0,他引:2  
研究了油膜热效应对滑动轴承非线性动力学特性的影响。给出了考虑油膜热效应的滑动轴承非线性油膜力的计算方法,用热量平衡法确定油膜平均温度,并把平均温度引入等温情况下的轴承非线性运动瞬态分析中,以实际轴承为例,对考虑热效应的转子-轴承系统的非线性不平衡响应进行了瞬态分析,得到了轴心运动轨迹,并与等温情况瞬态分析的计算结果进行了对比,通过一系列对比研究发现,轴承热效应对轴承的非线性动力学性能有重要影响,引入平均温度后可以减小不考虑热效应所引起的误差。  相似文献   

15.
建立了铁磁性流体自密封润滑滑动轴承静动特性的计算模型,用差分法对轴承的油膜压力方程、温度方程以及轴瓦导热方程进行了联立求解,计算和分析了该模型轴承在不同偏心率和不同长径比等工况下的静动特性。结果表明,在小偏心率和小长径比条件下,采用该模型轴承是可行的,轴承油膜温度比有端泄轴承的相应值高,轴承转速是影响油膜温度的主要因素。设计更加有效合理的密封形式是这种轴承发展和广泛应用的关键  相似文献   

16.
轴颈倾斜的径向轴承热弹性流体动力润滑分析   总被引:1,自引:0,他引:1  
通过联立求解质量守恒的广义Reynolds方程、能量方程、固体热传导方程和固体变形方程,建立了轴颈倾斜的径向轴承三维热弹性流体动力润滑(TEHD)模型.在此基础上,深入研究了轴颈倾斜径向轴承的TEHD性能.结果表明,弹性变形和热变形都对轴颈倾斜径向轴承的性能具有显著影响.当只考虑弹性变形时,油膜厚度变化曲线出现了局部“凸”的形状,且最大油膜压力减小;当只考虑热变形时,油膜厚度变化曲线出现了局部“凹”的形状,且最小油膜厚度增大,但热变形对最大油膜压力的影响不大;当同时考虑弹性变形和热变形(即完整的TEHD模型)时,轴颈倾斜径向轴承的所有性能参数都发生了明显的变化,因此,对于重载高速的操作工况,有必要建立轴颈倾斜径向轴承的TEHD模型.  相似文献   

17.
分析了椭圆和齿形两种轴颈圆度误差对滑动轴承润滑性能的影响机理,推导了考虑轴颈圆度误差时的油膜厚度公式;针对某滑动轴承,分析了不同轴颈圆度误差与轴承油膜厚度、油膜压力、摩擦功耗、端泄流量和轴心轨迹之间的关系.结果表明,两种圆度误差都明显导致滑动轴承的润滑性能下降;椭圆误差改变滑动轴承的油膜承载区面积,部分时间可能改善轴承的润滑性能;齿形误差引起滑动轴承周期性的油膜波动,使油膜压力呈多峰分布.  相似文献   

18.
本文对内燃机动载荷浮环主轴承进行了理论计算和分析.结合 S195柴油机的实际主轴承结构,运用 Holland-Butenschn 法进行轴心轨迹的计算,通过热平衡计算决定内外层油膜的粘度比,得到最小油膜厚度、功率损耗、浮环转速和流量的变化规律.计算表明,浮环轴承用作曲轴主轴承,无需改变现有最小油膜厚度的标准即可正常工作;内外层间隙不等时,单纯选取粘度比为1进行计算,与实际情况相差较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号