共查询到20条相似文献,搜索用时 15 毫秒
1.
针对单传感器在多机动目标跟踪系统中不能很好地处理目标数目变化与突发机动的问题,提出了多传感器多机动目标跟踪的概率假设密度滤波算法.以CPHD滤波算法为理论基础,同时递推概率假设密度(PHD)函数和基数分布,避免了多目标多传感器的数据关联问题.结合自适应当前统计模型,选择3个雷达作为跟踪目标的传感器,相比于单传感器降低了信息的模糊度,提高了可信度.仿真结果比较表明了多传感器CPHD滤波算法在多目标跟踪方面的性能优势. 相似文献
2.
A novel maneuvering multi-target tracking algorithm based on multiple model particle filter in clutters 总被引:1,自引:0,他引:1
To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory a- nalysis and simulation results show the validity of the method. 相似文献
3.
针对变结构多模型算法在目标机动性较强时,因模型切换不及时而出现较大的误差峰值问题,提出了一种固定滞后平滑的变结构多模型(lag smoothing variable structure multiple model,LS-VSMM)跟踪算法.建立一个完备的模型集,根据模型概率利用有向图切换规则实现模型子集与目标运动模式的匹配;引入固定滞后平滑算法,通过对状态向量扩维,将平滑问题转化为滤波问题,使得原特定时刻的目标状态在系统中停留的时间更长,增加更多的状态量测信息,让状态估计变得更加准确,并且以延迟一定时间输出来改善滤波性能;对算法进行了仿真实验分析.仿真结果表明,与基于无味有向图切换的多模型算法以及基于有向图切换的变结构多模型(digraph switch variable structure multiple model,DS-VSMM)算法相比,LS-VSMM算法在有效降低误差峰值的同时,提高了目标的跟踪精度. 相似文献
4.
机动目标跟踪中一种改进的自适应卡尔曼滤波算法 总被引:1,自引:0,他引:1
针对“当前”统计模型中预先设置机动频率和加速度极限值造成对目标跟踪精度不高的问题,提出一种新的参数自适应算法.该算法利用目标前后2个时刻的加速度均值代替“当前”统计模型中只利用前一时刻的加速度值作为当前时刻的加速度均值,推导出了机动频率自适应,再利用加速度方差与加速度变化量之间存在的正比线性关系,推导出了加速度方差自适应,避免了由于参数设置不合理而造成的跟踪误差.理论分析和仿真结果表明,改进算法有效提高了目标跟踪精度,仿真结果验证了改进算法的有效性. 相似文献
5.
一种机动目标跟踪的IMM模型优化设计方法 总被引:1,自引:0,他引:1
为了提高机动目标的跟踪精度,提出了一种使用2个模型实现对机动目标跟踪的多模型算法,采用当前统计模型和扩展后的常速模型组成的模型集进行交互.该算法不受目标转弯率大小和变化的限制,对目标运动模式的未知参数变化的适应性较强.该算法对目标的跟踪精度优于传统的使用3个以上模型交互的IMM-CV/CT算法,仿真结果证明了该算法的有效性. 相似文献
6.
7.
一种基于Kalman和扩展Kalman滤波器的相互作用多模型(IMM)方法可以减小模型的不确定性,但无法消除由于噪声相关引起的状态偏差的弱点.为了提高目标状态估计的精度,把IMM和一种带多重渐消因子的扩展Kalman滤波器(SMFEKF)相结合,提出了一种具有相关噪声的混合随机模型的机动目标跟踪方法.这种方法引入了一个多重渐消因子,当输出残差发生变化时,动态调节增益和系统噪声水平,使输出残差近似正交,从而抑制了相关噪声的影响,适应目标的状态变化.理论分析和仿真实验表明了这种算法的有效性和可行性. 相似文献
8.
引入多速率模型的变结构机动目标跟踪 总被引:1,自引:0,他引:1
变结构多模型方法(VSMM)能够根据目标机动的实际情况实时确定结构不断变化的模型集合,取代传统IMM方法中的固定模型集.使参与状态估计的模型分布更集中,模型数量相对较少,从而提高算法的跟踪精度.多速率模型(Multirate)能够对原始测量数据进行多分辨分解,有效的抑制量测噪声,从而提高原始数据的信噪比.文章将多速率模型引入变结构多模型方法,提出一种新的机动目标跟踪算法多速率变结构多模型方法(MRVSMM),该方法分别从改善原始数据与改善模型集合两方面对传统IMM方法进行了突破.同时,采用多个多速率模型,并将多个模型的滤波结果相互交织实现对机动目标的全速率跟踪.仿真实验证明,该算法较传统的IMM方法跟踪精度得到了一定程度的提高. 相似文献
9.
在IMM算法的基础上,提出了一种新的机动目标跟踪FIMM算法.该算法使用中值滤波对IMM算法模型更新概率进行平滑,再对其利用模糊推理系统进行实时修正,将修正后的概率作为最后输出的权值,让有用模型概率增大,减少了模型之间的竞争,提高跟踪精度.仿真实验表明,提出的FIMM算法显著提高了IMM算法的跟踪性能. 相似文献
10.
The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm. 相似文献
11.
针对目标跟踪算法在精度和鲁棒性上的要求,提出一种基于改进粒子滤波的视觉目标跟踪算法.首先,建立多种特征来描述目标外观模型,并对各特征分量的加权系数进行自适应调节;然后,利用分类重采样方法解决原始重采样方法中的粒子退化和匮乏问题;最后,提出一种新的模板更新机制,自适应选取运动模板或原始模板.实验结果表明,改进后的算法在具有挑战的跟踪视频序列上实验,具有良好的跟踪精度和鲁棒性,能够应对视频图像分辨率不高、目标转动变化、部分遮挡等复杂条件. 相似文献
12.
Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm. 相似文献
13.
对于过程噪声与观测噪声一步互相关、各观测噪声一步自相关的多传感器融合滤波问题,提出了一种新的低维序贯式融合滤波算法.基于低阶迭代正交变换的思想提出了解相关的方法,将观测方程经过等价改写去除系统噪声的相关性,然后依据序贯滤波的思想,依次处理到达融合中心的观测信息,进而得到一类实时序贯式融合滤波算法.整个推导过程在线性最小均方误差意义下严格进行,能够实现系统状态的最优融合估计.最后的仿真验证了新算法在处理上述噪声相关问题上的最优性. 相似文献
14.
针对传统交互式多模型(interactive multiple model,IMM)算法跟踪机动式再入目标精度差和实时性不高的问题,提出一种交互式多模型迭代无迹Kalman粒子滤波算法.该算法在多模型滤波过程中采用改进的粒子滤波算法,通过迭代无迹Kalman滤波融入最新观测信息,进而生成粒子滤波的重要性密度分布,从而提高采样质量,改善滤波算法性能.仿真结果表明,提出的算法相对于交互式多模型粒子滤波算法具有更好的跟踪效果.该算法对提高跟踪机动式再入目标的精度与实时能力具有一定的理论意义. 相似文献
15.
以目标跟踪为主要目的,对主被动雷达基于改进算法的分布式分层融合进行了仿真研究。仿真研究验证了基于固定指数加权模糊自适应EKF滤波算法的主被动雷达分层融合系统,能够显著提高目标跟踪精度且稳定性好。同时验证了分布式分层融合跟踪性能,明显优越于分布式平均加权融合方法。 相似文献
16.
一种改进的无迹粒子滤波器在目标跟踪中的应用 总被引:1,自引:0,他引:1
提出了利用神经元网络改进的无迹粒子滤波器(unscented particle filter,UPF)方法.该方法利用神经元网络改进粒子滤波的建议分布,修正UPF跟踪中产生的误差,提高滤波性能.仅用角测量的目标跟踪仿真试验证实了神经元网络对UPF的改进效果,能够在合理的时间消耗代价下,提高无线传感网络中目标跟踪精度. 相似文献
17.
针对基于扩展卡尔曼滤波的融合算法存在滤波精度不高的问题,将修正扩展卡尔曼滤波算法与集中式序贯融合算法相结合,用于毫米波雷达和红外传感器目标融合跟踪。即先对毫米波雷达进行修正扩展卡尔曼滤波,再将滤波结果与红外传感器进行融合滤波。仿真结果表明该算法能够提高对机动目标的跟踪精度,增强跟踪系统对环境变化的适应能力。 相似文献
18.
矿井瓦斯监测多传感器信息融合模型 总被引:5,自引:1,他引:5
分析了矿井瓦斯监测中存在的对传感器的影响因素多等单个传感器本身所不能解决的问题,提出了利用多传感器信息融合技术来增加系统的信息利用率、提高整个系统的精度、可靠性和容错能力的方法。在讨论矿井瓦斯监测的信息源的基础上,确定了瓦斯监测多传感器信息融合的结构模式,利用状态空间方法对此结构模式进行了描述,建立了瓦斯监测系统多传感器信息融合的状态空间模型。采用人工智能方法,建立了多传感器信息融合的模糊神经网络算法模型,实验结果表明,该模型是有效的。 相似文献
19.
针对Jerk模型中各参数设置不合理对跟踪系统所造成的影响,提出一种基于自回归(AR)模型的Jerk参数自适应改进算法,实时估计并调整系统的参数,提高系统的跟踪精度及稳定性;同时,针对非线性目标跟踪系统扩展卡尔曼滤波算法(EKF)计算复杂跟踪精度低,提出采用平方根容积卡尔曼滤波器(SRCKF)进行状态估计,保证跟踪系统的精度和鲁棒性,为Jerk模型参数自适应提供良好条件.仿真结果验证了算法的有效性. 相似文献
20.
在空战中,需要基于空中移动平台对机动目标进行自适应跟踪.由于机动目标“当前”统计模型符合实际目标的动力特征,所以文中基于该模型,针对空基多平台多传感器环境,推导了机动目标跟踪的状态方程和测量方程,并给出了机动目标自适应跟踪算法.Monte—Carlo仿真表明,该方法能有效地估计出机动目标的运动状态. 相似文献