首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renault L  Guibert B  Cherfils J 《Nature》2003,426(6966):525-530
Small GTP-binding (G) proteins are activated by GDP/GTP nucleotide exchange stimulated by guanine nucleotide exchange factors (GEFs). Nucleotide dissociation from small G protein-GEF complexes involves transient GDP-bound intermediates whose structures have never been described. In the case of Arf proteins, small G proteins that regulate membrane traffic in eukaryotic cells, such intermediates can be trapped either by the natural inhibitor brefeldin A or by charge reversal at the catalytic glutamate of the Sec7 domain of their GEFs. Here we report the crystal structures of these intermediates that show that membrane recruitment of Arf and nucleotide dissociation are separate reactions stimulated by Sec7. The reactions proceed through sequential rotations of the Arf.GDP core towards the Sec7 catalytic site, and are blocked by interfacial binding of brefeldin A and unproductive stabilization of GDP by charge reversal. The structural characteristics of the reaction and its modes of inhibition reveal unexplored ways in which to inhibit the activation of small G proteins.  相似文献   

2.
Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1   总被引:76,自引:0,他引:76  
F R Bischoff  H Ponstingl 《Nature》1991,354(6348):80-82
The product of the gene RCC1 (regulator of chromosome condensation) in a BHK cell line is involved in the control of mitotic events. Homologous genes have been found in Xenopus, Drosophila and yeast. A human genomic DNA fragment and complementary DNA that complement a temperature-sensitive mutation of RCC1 in BHK21 cells encode a protein of relative molecular mass 45,000 (Mr 45K) which is located in the nucleus and binds to chromatin. We have recently isolated a protein from HeLa cells that strongly binds an anti-RCC1 antibody and has the same molecular mass, DNA-binding properties, and amino-acid sequence as the 205 residues already identified. HeLa cell RCC1 is complexed to a protein of Mr 25K. We have shown that this 25K protein has a sequence homologous to the translated reading frame of TC4, a cDNA found by screening a human teratocarcinoma cDNA library with oligonucleotides coding for a ras consensus sequence, and that the protein binds GDP and GTP. We have referred to this protein as the Ran protein (ras-related nuclear protein). In addition to the fraction of Ran protein complexed to RCC1, a 25-fold molar excess of the protein over RCC1 was found in the nucleoplasm of HeLa cells. Here we show that RCC1 specifically catalyses the exchange of guanine nucleotides on the Ran protein but not on the protein c-Ha-ras p21 (p21ras).  相似文献   

3.
Worthylake DK  Rossman KL  Sondek J 《Nature》2000,408(6813):682-688
The principal guanine nucleotide exchange factors for Rho family G proteins contain tandem Dbl-homology (DH) and pleckstrin-homology (PH) domains that catalyse nucleotide exchange and the activation of G proteins. Here we have determined the crystal structure of the DH and PH domains of the T-lymphoma invasion and metastasis factor 1 (Tiam1) protein in complex with its cognate Rho family G protein, Rac1. The two switch regions of Rac1 are stabilized in conformations that disrupt both magnesium binding and guanine nucleotide interaction. The resulting cleft in Rac1 is devoid of nucleotide and highly exposed to solvent. The PH domain of Tiam1 does not contact Rac1, and the position and orientation of the PH domain is markedly altered relative to the structure of the uncomplexed, GTPase-free DH/PH element from Sos1. The Tiam1/Rac1 structure highlights the interactions that catalyse nucleotide exchange on Rho family G proteins, and illustrates structural determinants dictating specificity between individual Rho family members and their associated Dbl-related guanine nucleotide exchange factors.  相似文献   

4.
M J Hart  A Eva  T Evans  S A Aaronson  R A Cerione 《Nature》1991,354(6351):311-314
THE superfamily of low molecular mass GTP-binding proteins, for which the ras proteins are prototypes, has been implicated in the regulation of diverse biological activities including protein trafficking, secretion, and cell growth and differentiation. One member of this family, CDC42Hs (originally referred to as Gp or G25K), seems to be the human homologue of the Saccharomyces cerevisiae cell-division-cycle protein, CDC42Sc. A second S. cerevisiae protein, CDC24, which is known from complementation studies to act with CDC42Sc to regulate the development of normal cell shape and the selection of nonrandom budding sites in yeast, contains a region with sequence similarity to the dbl oncogene product. Here we show that dbl specifically catalyses the dissociation of GDP from CDC42Hs and thereby qualifies as a highly selective guanine nucleotide exchange factor for the GTP-binding protein. Although guanine nucleotide exchange activities have been previously described for other members of the Ras-related GTP-binding protein family, this is the first demonstration, to our knowledge, of the involvement of a human oncogenic protein in catalysing exchange activity.  相似文献   

5.
D L Gill  T Ueda  S H Chueh  M W Noel 《Nature》1986,320(6061):461-464
Ca2+ accumulation and release from intracellular organelles is important for Ca2+-signalling events within cells. In a variety of cell types, the active Ca2+-pumping properties of endoplasmic reticulum (ER) have been directly studied using chemically permeabilized cells. The same preparations have been extensively used to study Ca2+ release from ER, in particular, release mediated by the intracellular messenger inositol 1,4,5-trisphosphate (InsP3). So far, these studies and others using microsomal membrane fractions have revealed few mechanistic details of Ca2+ release from ER, although a recent report indicated that InsP3-mediated Ca2+ release from liver microsomes may be dependent on GTP. In contrast to the latter report, we describe here the direct activation of a specific and sensitive guanine nucleotide regulatory mechanism mediating a substantial release of Ca2+ from the ER of cells of the neuronal cell line N1E-115. These data indicate the operation of a major new Ca2+ gating mechanism in ER which is specifically activated by GTP, deactivated by GDP, and which appears to involve a GTP hydrolytic cycle.  相似文献   

6.
7.
K Str?sser  E Hurt 《Nature》2001,413(6856):648-652
The yeast nuclear protein Yra1p is an essential export factor for mRNA. Yra1p interacts directly with the mRNA transport factor Mex67p/Mtr2p, which is associated with the nuclear pore. Here, we report a genetic interaction between YRA1 and SUB2, the gene for a DEAD box helicase involved in splicing. Mutation of SUB2 as well as its overexpression leads to a defect in mRNA export. Moreover, Yra1p and Sub2p bind directly to each other both in vivo and in vitro. Significantly, Sub2p and Mex67p/Mtr2p bind to the same domains of Yra1p, and the proteins compete for binding to Yra1p. Together, these data indicate that the spliceosomal component Sub2p is also important in mRNA export and may function to recruit Yra1p to the mRNA. Sub2p may then be displaced from Yra1p by the binding of Mex67p/Mtr2p, which participates in the export of mRNA through the nuclear pores.  相似文献   

8.
9.
Wang F  Podell ER  Zaug AJ  Yang Y  Baciu P  Cech TR  Lei M 《Nature》2007,445(7127):506-510
Telomeres were originally defined as chromosome caps that prevent the natural ends of linear chromosomes from undergoing deleterious degradation and fusion events. POT1 (protection of telomeres) protein binds the single-stranded G-rich DNA overhangs at human chromosome ends and suppresses unwanted DNA repair activities. TPP1 is a previously identified binding partner of POT1 that has been proposed to form part of a six-protein shelterin complex at telomeres. Here, the crystal structure of a domain of human TPP1 reveals an oligonucleotide/oligosaccharide-binding fold that is structurally similar to the beta-subunit of the telomere end-binding protein of a ciliated protozoan, suggesting that TPP1 is the missing beta-subunit of human POT1 protein. Telomeric DNA end-binding proteins have generally been found to inhibit rather than stimulate the action of the chromosome end-replicating enzyme, telomerase. In contrast, we find that TPP1 and POT1 form a complex with telomeric DNA that increases the activity and processivity of the human telomerase core enzyme. We propose that POT1-TPP1 switches from inhibiting telomerase access to the telomere, as a component of shelterin, to serving as a processivity factor for telomerase during telomere extension.  相似文献   

10.
Plasma membrane receptors for hormones, drugs, neurotransmitters and sensory stimuli are coupled to guanine nucleotide regulatory proteins. Recent cloning of the genes and/or cDNAs for several of these receptors including the visual pigment rhodopsin, the adenylate-cyclase stimulatory beta-adrenergic receptor and two subtypes of muscarinic cholinergic receptors has suggested that these are homologous proteins with several conserved structural and functional features. Whereas the rhodopsin gene consists of five exons interrupted by four introns, surprisingly the human and hamster beta-adrenergic receptor genes contain no introns in either their coding or untranslated sequences. We have cloned and sequenced a DNA fragment in the human genome which cross-hybridizes with a full-length beta 2-adrenergic receptor probe at reduced stringency. Like the beta 2-adrenergic receptor this gene appears to be intronless, containing an uninterrupted long open reading frame which encodes a putative protein with all the expected structural features of a G-protein-coupled receptor.  相似文献   

11.
Hepatitis C virus (HCV) is a leading cause of cirrhosis and liver cancer worldwide. A better understanding of the viral life cycle, including the mechanisms of entry into host cells, is needed to identify novel therapeutic targets. Although HCV entry requires the CD81 co-receptor, and other host molecules have been implicated, at least one factor critical to this process remains unknown (reviewed in refs 1-3). Using an iterative expression cloning approach we identified claudin-1 (CLDN1), a tight junction component that is highly expressed in the liver, as essential for HCV entry. CLDN1 is required for HCV infection of human hepatoma cell lines and is the first factor to confer susceptibility to HCV when ectopically expressed in non-hepatic cells. Discrete residues within the first extracellular loop (EL1) of CLDN1, but not protein interaction motifs in intracellular domains, are critical for HCV entry. Moreover, antibodies directed against an epitope inserted in the CLDN1 EL1 block HCV infection. The kinetics of this inhibition indicate that CLDN1 acts late in the entry process, after virus binding and interaction with the HCV co-receptor CD81. With CLDN1 we have identified a novel key factor for HCV entry and a new target for antiviral drug development.  相似文献   

12.
Uehlein N  Lovisolo C  Siefritz F  Kaldenhoff R 《Nature》2003,425(6959):734-737
Aquaporins, found in virtually all living organisms, are membrane-intrinsic proteins that form water-permeable complexes. The mammalian aquaporin AQP1 has also shown CO2 permeability when expressed heterologously in Xenopus oocytes, although whether this is a biochemical curiosity or of physiological significance is a matter of debate. Here we report that, in the same expression system, a CO2 permeability comparable to that of the human AQP1 is observed for the tobacco plasma membrane aquaporin NtAQP1. NtAQP1 facilitates CO2 membrane transport in the homologous plant system at the cellular level, and has a significant function in photosynthesis and in stomatal opening. NtAQP1 overexpression heightens membrane permeability for CO2 and water, and increases leaf growth. The results indicate that NtAQP1-related CO2 permeability is of physiological importance under conditions where the CO2 gradient across a membrane is small, as is the case between the atmosphere and the inside of a plant cell.  相似文献   

13.
Zheng Y  Mellem JE  Brockie PJ  Madsen DM  Maricq AV 《Nature》2004,427(6973):451-457
Ionotropic glutamate receptors (iGluRs) mediate most excitatory synaptic signalling between neurons. Binding of the neurotransmitter glutamate causes a conformational change in these receptors that gates open a transmembrane pore through which ions can pass. The gating of iGluRs is crucially dependent on a conserved amino acid that was first identified in the 'lurcher' ataxic mouse. Through a screen for modifiers of iGluR function in a transgenic strain of Caenorhabditis elegans expressing a GLR-1 subunit containing the lurcher mutation, we identify suppressor of lurcher (sol-1). This gene encodes a transmembrane protein that is predicted to contain four extracellular beta-barrel-forming domains known as CUB domains. SOL-1 and GLR-1 are colocalized at the cell surface and can be co-immunoprecipitated. By recording from neurons expressing GLR-1, we show that SOL-1 is an accessory protein that is selectively required for glutamate-gated currents. We propose that SOL-1 participates in the gating of non-NMDA (N-methyl-D-aspartate) iGluRs, thereby providing a previously unknown mechanism of regulation for this important class of neurotransmitter receptor.  相似文献   

14.
Chen NJ  Mirtsos C  Suh D  Lu YC  Lin WJ  McKerlie C  Lee T  Baribault H  Tian H  Yeh WC 《Nature》2007,446(7132):203-207
Complement-derived anaphylatoxins regulate immune and inflammatory responses through G-protein-coupled receptor (GPCR)-mediated signalling. C5L2 (also known as GPR77) is a relatively new GPCR thought to be a non-signalling receptor binding to C5a, on the basis of sequence information and experimental evidence. Here we show, using gene targeting, that C5L2 is required to facilitate C5a signalling in neutrophils, macrophages and fibroblasts in vitro. Deficiency of C5L2 results in reduced inflammatory cell infiltration, suggesting that C5L2 is critical for optimal C5a-mediated cell infiltration in certain in vivo settings. C5L2 is also involved in optimizing C3a-induced signals. Furthermore, like mice incapable of C3a/complement 3a receptor (C3aR) signalling, C5L2-deficient mice are hypersensitive to lipopolysaccharide (LPS)-induced septic shock, show reduced ovalbumin (OVA)-induced airway hyper-responsiveness and inflammation, and are mildly delayed in haematopoietic cell regeneration after gamma-irradiation. Our data indicate that C5L2 can function as a positive modulator for both C5a- and C3a-anaphylatoxin-induced responses.  相似文献   

15.
Reimann JD  Jackson PK 《Nature》2002,416(6883):850-854
Vertebrate eggs are arrested at metaphase of meiosis II with stable cyclin B and high cyclin B/Cdc2 kinase activity. The ability of the anaphase-promoting complex/cyclosome (APC), an E3 ubiquitin ligase, to trigger cyclin B destruction and metaphase exit is blocked in eggs by the activity of cytostatic factor (CSF) (reviewed in ref. 1). CSF was defined as an activity in mature oocytes that caused mitotic arrest when injected into dividing embryos. Fertilization causes a transient increase in cytoplasmic calcium concentration leading to CSF inactivation, APC activation, cyclin B destruction and mitotic exit. The APC activator Cdc20 is required for APC activation after fertilization. We show here that the APC(cdc20) inhibitor Emi1 (ref. 6) is necessary and sufficient to inhibit the APC and to prevent mitotic exit in CSF-arrested eggs. CSF extracts immunodepleted of Emi1 degrade cyclin B, and exit from mitosis prematurely in the absence of calcium. Addition of Emi1 to these Emi1-depleted extracts blocks premature inactivation of the CSF-arrested state. Emi1 is required to arrest unfertilized eggs at metaphase of meiosis II and seems to be the long-sought mediator of CSF activity.  相似文献   

16.
Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein   总被引:34,自引:0,他引:34  
R B Vallee  J S Wall  B M Paschal  H S Shpetner 《Nature》1988,332(6164):561-563
Dynein, an ATPase, is the force-generating protein in cilia and flagella. It has long been speculated that cytoplasmic microtubules contain a related enzyme involved in cell division or in intracellular organelle transport. A 'cytoplasmic dynein' has been described in sea urchin eggs, but because the egg stockpiles precursors for both cytoplasmic and ciliary microtubules, the role of this enzyme in the cell has remained unresolved. We recently found that the microtubule-associated protein (MAP) 1C (ref. 6) from brain is a microtubule-activated ATPase that produces force in the direction corresponding to retrograde organelle transport in the cell. MAP 1C has several similar properties to ciliary and flagellar dynein. Here we show directly, using scanning transmission electron microscopy, that MAP 1C is structurally equivalent to the ciliary and flagellar enzyme and is the long-sought cytoplasmic analogue of this enzyme.  相似文献   

17.
BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra   总被引:73,自引:0,他引:73  
Brain-derived neurotrophic factor (BDNF), present in minute amounts in the adult central nervous system, is a member of the nerve growth factor (NGF) family, which includes neurotrophin-3 (NT-3). NGF, BDNF and NT-3 all support survival of subpopulations of neural crest-derived sensory neurons; most sympathetic neurons are responsive to NGF, but not to BDNF; NT-3 and BDNF, but not NGF, promote survival of sensory neurons of the nodose ganglion. BDNF, but not NGF, supports the survival of cultured retinal ganglion cells but both NGF and BDNF promote the survival of septal cholinergic neurons in vitro. However, knowledge of their precise physiological role in development and maintenance of the nervous system neurons is still limited. The BDNF gene is expressed in many regions of the adult CNS, including the striatum. A protein partially purified from bovine striatum, a target of nigral dopaminergic neurons, with characteristics apparently similar to those of BDNF, can enhance the survival of dopaminergic neurons in mesencephalic cultures. BDNF seems to be a trophic factor for mesencephalic dopaminergic neurons, increasing their survival, including that of neuronal cells which degenerate in Parkinson's disease. Here we report the effects of BDNF on the survival of dopaminergic neurons of the developing substantia nigra.  相似文献   

18.
19.
Nerve growth factor is a mitogen for cultured chromaffin cells   总被引:4,自引:0,他引:4  
L E Lillien  P Claude 《Nature》1985,317(6038):632-634
Nerve growth factor (NGF) is essential for the survival and differentiation of a number of neural crest derivatives, including sympathetic and sensory neurones. While early studies suggested that NGF might also have a mitogenic effect on these neurones, subsequent work has favoured the interpretation that NGF promotes cell survival or differentiation rather than proliferation. We have addressed the issue of a mitogenic effect of NGF using adrenal chromaffin cells, which are endocrine cells derived from the neural crest, and are closely related to sympathetic neurones. Adrenal chromaffin cells respond to NGF in vitro by expressing neuronal traits. We now report that NGF elicits a mitotic response in cultured chromaffin cells from young rats, and that this response is blocked by an antiserum to 2.5S NGF. The chromaffin cells that divided in response to NGF can subsequently become neuronal in the continued presence of NGF.  相似文献   

20.
Singh R  Jamieson A  Cresswell P 《Nature》2008,455(7217):1244-1247
Listeria monocytogenes is a gram-positive, intracellular, food-borne pathogen that can cause severe illness in humans and animals. On infection, it is actively phagocytosed by macrophages; it then escapes from the phagosome, replicates in the cytosol, and subsequently spreads from cell to cell by a non-lytic mechanism driven by actin polymerization. Penetration of the phagosomal membrane is initiated by the secreted haemolysin listeriolysin O (LLO), which is essential for vacuolar escape in vitro and for virulence in animal models of infection. Reduction is required to activate the lytic activity of LLO in vitro, and we show here that reduction by the enzyme gamma-interferon-inducible lysosomal thiol reductase (GILT, also called Ifi30) is responsible for the activation of LLO in vivo. GILT is a soluble thiol reductase expressed constitutively within the lysosomes of antigen-presenting cells, and it accumulates in macrophage phagosomes as they mature into phagolysosomes. The enzyme is delivered by a mannose-6-phosphate receptor-dependent mechanism to the endocytic pathway, where amino- and carboxy-terminal pro-peptides are cleaved to generate a 30-kDa mature enzyme. The active site of GILT contains two cysteine residues in a CXXC motif that catalyses the reduction of disulphide bonds. Mice lacking GILT are deficient in generating major histocompatibility complex class-II-restricted CD4(+) T-cell responses to protein antigens that contain disulphide bonds. Here we show that these mice are resistant to L. monocytogenes infection. Replication of the organism in GILT-negative macrophages, or macrophages expressing an enzymatically inactive GILT mutant, is impaired because of delayed escape from the phagosome. GILT activates LLO within the phagosome by the thiol reductase mechanism shared by members of the thioredoxin family. In addition, purified GILT activates recombinant LLO, facilitating membrane permeabilization and red blood cell lysis. The data show that GILT is a critical host factor that facilitates L. monocytogenes infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号