首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
将轧制变形区分为滑动摩擦区和粘着摩擦区,得到适用于带钢热轧过程的改进卡尔曼(KARMAN)微分方程,给出轧制力数值计算公式。结合变形区入口与出口的边界条件,采用龙格-库塔(Runge-Kutta)法交替求解前滑区与后滑区的单位压力分布,2个接触弧角相交处就是中性点,通过对单位压力与摩擦应力进行数值积分得到轧件的轧制力,再根据希齐柯克(Hitchcock)公式迭代计算多次得到最终轧制力。最后,分析新型轧制力模型应用于热连轧机组面临的问题,给出热轧过程摩擦因数对单位压力分布与轧制力的影响规律,并通过布伦特(Brent)方法实现对热轧过程摩擦因数的软测量,指出摩擦因数在1个轧制周期内的演变规律,为热连轧过程摩擦因素在线模型的建立与新型数值轧制力模型的在线应用提供参考。  相似文献   

2.
本文按如下的出发点导出轧制压力的计算公式:(1)以平面压缩过程代替轧制过程;(2)接触面按不同摩擦规律分区;(3)采用非主轴坐标系的形状变形能塑性条件;(4)近似估计纵向应力σ_x沿板厚不均匀分布对轧制压力的影响。导出的计算公式可用于计算冷轧板带和热轧中、薄板的轧制压力。  相似文献   

3.
本文在平面应变条件下,假设轧件为应变硬化的刚塑性体,轧辊为不变形的刚体,轧辊与轧件之间的接触摩擦条件为粘着,即轧辊与轧件之间无相对滑动。用刚塑性有限单元法计算了平板轧制过程的单位压力,金属流动速度和应变、应力分布等,并对接触弧长、刚塑性交界面、前滑系数和中性角等的确定提出新的看法。 有限单元法计算程序是以刚塑性广义变分原理为基础,采用八节点曲边四边形等参单元。根据在四辊轧机上轧制铝板的实测数据,对计算结果进行验证。  相似文献   

4.
轧制过程的显式动力学有限元模拟   总被引:23,自引:0,他引:23  
分析了显式动力学弹塑性有限元方法的计算过程,并用其对平板轧制问题进行了模拟计算·模拟时轧辊采用刚性材料模型,轧件采用双线性强化材料模型,轧件具有一定的初始速度并向辊缝运动,咬入后靠摩擦完成轧制过程·通过模拟计算,得出咬入、稳定轧制和抛钢阶段整个轧制过程的应力应变场·将板宽对称中心线轧制压力分布的计算结果与实验值进行对比,表明计算结果准确·另外通过对计算结果进行分析还可以得出,在稳定轧制阶段存在弹性预变形区、塑性变形区和弹性恢复区;轧制压力沿接触面的分布在入口和出口的变化梯度较大,中间区域的变化梯度较小·  相似文献   

5.
公式是冷轧最常用的轧制压力模型之一,为提高模型精度,对该公式进行了分析。根据实验资料的校核和上机计算表明,影响压力分析的重要因素之一——外区的影响未予考虑,使在某范围内给出的值偏低,所用的摩擦规律未被实验证实,而且在大压下量薄轧件轧制时,给出的值偏高。分析计算结果表明公式不能在所有轧制情况下与实际相符,且作者提出的一些论点也值得商榷。  相似文献   

6.
轧制过程中,变形区的边界条件很复杂,难以用解析方法准确分析求解,本文尝试用有摩擦弹塑性接触问题边界元法模拟轧制过程,在分析过程中视轧辊为弹性体,轧件为弹性塑性材料在接触边界上考虑了滑动和粘着两种摩擦状态。本文用较少的假设,更准确地模拟了轧制过程,为轧制分析提供了一个有效而精确的方法。  相似文献   

7.
为解决压力加工中的接触摩擦问题,根据金属流动反作用原理,本文提出了一个新的接触摩擦模型,经三维弹塑性有限元程序计算以及对凹辊面薄带轧制的金属三维变形分析表明,在不用对摩擦力大小、方向及中性点位置作任何假定的情况下,新模型能够有效地模拟中间物质剪切及压力传递。  相似文献   

8.
基于Christensen的表面粗糙峰分布假设,以轧制理论、流体力学理论为基础建立了考虑表面粗糙度的冷轧混合润滑模型,并提出了混合润滑摩擦状态约束关系式用来判别摩擦状态.对不同条件下油膜厚度、接触面积比、压应力及摩擦应力分布情况进行了仿真分析.结果表明:随着压下率的增加,油膜变薄、界面接触面积比增加、应力增大;同时,表面粗糙度对界面接触面积比及应力分布有较大影响,粗糙度增加,界面接触面积比增加,压应力及摩擦应力均增加.较高的润滑液黏度或轧制速度可以有效地降低轧制界面摩擦力及轧制力.  相似文献   

9.
一、压力计算中存在的问题计算机在线控制和离线分析冷轧过程中,均要求给出较精确的压力预报值。由于冷轧过程的单位压力极高,轧辊将产生显著的弹性压扁现象。它可使变形区长度增长,并通过改变变形区几何形状参数L′/h使摩擦条件的影响加剧,从而使轧制压力大大增加。因此,在确定冷轧过程的轧制压力时,必须考虑轧辊压扁的影响。否则,将产生较大误差。这样必将对设定控制、厚度控制和板形控制带来不利影响。  相似文献   

10.
针对极薄板小变形平整机稳态轧制负荷计算困难的问题,基于平板压缩复合变形假设,提出了改进的平整稳态轧制力及轧制力矩的数学模型.轧制力模型包括辊缝区等效变形区长度和压缩变形抗力2个经验模型;在轧制力模型计算的基础上,用输出力矩模型对带钢张力影响因素进行了经验修正;通过轧制负荷模型的理论计算结果和一条生产线的实际参数比较,证明模型具有较高计算精度,平板压缩变形假设合理.将所开发的模型应用于一条新建的极薄板平整生产线的关键设备参数的设计评估,结果表明该模型具有较高的工程应用价值.  相似文献   

11.
通过建立汽化燃烧区对热轧变形区进行分析计算,发现无论在热轧变形区入口处的汽化燃烧区,还是在变形区,油水混合液都没有足够的时间达到燃点,仍以液体形式存在.采用四球摩擦试验机进行了油膜强度和摩擦因数测定并进行长磨试验.磨斑表面观察表明:当轧制油在水中的质量浓度大于2 g.L-1时,润滑状态为边界润滑,该状态下的润滑作用效果取决于油膜强度,并非轧制油的质量浓度.采用2 g.L-1质量浓度进行轧制润滑生产试验,验证了上述研究结果.润滑有效地降低了轧制压力,同时对冷却水污染最小,取得了很好的润滑效果.对于不同的轧制产品与工艺而言,建议轧制油使用的质量浓度应小于10 g.L-1,否则轧制油残留可能引起冷却水污染.  相似文献   

12.
平辊轧制时轧制力的理论计算,从1925年卡尔曼建立微分平衡方程以来,已经有五十年历史。现有的轧制力计算公式,有许多是在卡尔曼方程基础上,加上各种假设条件解出来的。由于假设条件不同,各公式的形式及计算结果也不相同,特别是与实测结果相比,各公式的适用范围及可靠程度都有很大的局限性,以致在使用时心中无数。 一般在推导轧制力计算公式时最基本的假设有以下几个方面:  相似文献   

13.
高速轧机工作界面非稳态润滑过程界面动力学特性   总被引:1,自引:0,他引:1  
综合运用轧制理论、流体力学理论、摩擦润滑理论,建立考虑非稳态润滑过程轧机系统力学模型.该模型综合运用界面摩擦模型、轧制力、轧制力矩模型、流体动力润滑模型构成的多重耦合模型,定量分析高速轧机工作界面非稳态润滑过程界面动力学特性.研究结果表明:对于较小的压下率,摩擦应力很小,摩擦应力最大值发生在入口和出口的边缘处,并且在较小的压下率下油膜压应力变化非常小;在较大的张应力条件下,工作区压应力低,油膜剪切应力小,压力梯度也相当小;摩擦应力在入口和出口边缘达到最大;随着张应力的减小,油膜压力增大,剪切应力增大更快,最终达到了润滑油抗剪强度;在全膜润滑或者表面粗糙度很小的情况下,轧制力的平均值和轧制力变化的幅度随着压下率的增加而增加,轧制力的最小值几乎一样,不受表面粗糙度和压下率变化的影响;轧制力矩的变化趋势和轧制力的变化非常相似,然而对于带材表面粗糙度很大的轧制过程,轧制力矩的变化幅度比轧制力的变化小.  相似文献   

14.
本文分析了全异步轧制时变形区的应力状态。其应力状态是,在用全异步带张的拉直法冷轧薄带材时为轧制压力p、拉应力σ_x以及由于异步值而产生的切应力τ。此切应力不仅有清除同步轧制时“摩擦峰”的作用,而且还对轧件的塑性变形起切变作用。故其塑性方程式为:(σ_x p)~2 4τ~2=4K~2。据此,我们推导出了全异步轧制时的轧制力公式,并用此公式计算的轧制力值同全异步轧制的实验数据进行了比较。  相似文献   

15.
为得到多参数耦合下冷轧铝带工作辊分段冷却调节特性,建立了工作辊和轧件的一体化耦合传热模型。耦合传热建模过程包含工作辊和轧件导热微分方程的建立、轧件变形热和摩擦热的求解、换热边界条件的确立、工作辊热辊形的计算及采用二维交替差分对微分方程进行求解。仿真结果表明,同一轧制参数下工作辊分段冷却正负方向调节能力近似相等,但单向调节幅度受轧制参数影响较大,轧制长度、喷射梁工作压力和摩擦系数的增加对分段冷却调控能力具有促进作用,轧制速度的作用则相反。  相似文献   

16.
变形速度是轧制中的一个重要因素.导出粘着摩擦和滑动摩擦两种情况下,轧制变形速度的表达式.计算结果表明,粘着摩擦和滑动摩擦变形速度在轧件开始咬入附近处变形速度最大;在轧件与轧辊分离处,变形速度为零,在这点附近粘着摩擦和滑动摩擦变形速度值接近相等,摩擦系数几乎不影响滑动摩擦情况下的变形速度.  相似文献   

17.
应用有限元的方法模拟了异步轧制过程,并对轧制压力进行了分析研究。轧制压力的模拟结果与理论计算结果吻合较好。模拟结果表明,随着速比的增加,轧制压力逐渐减小并趋于稳定。对异步轧机的设计和轧制工艺的制定具有参考意义和应用价值。  相似文献   

18.
在板坯轧制过程中,由于一些不对称的轧制条件的影响,会使辊系的平衡发生变化,进而影响到轧件的横向厚度分布,使轧件凸度分布异常,出现跑偏现象,最终导致产品的板形不良和尺寸精度变差.基于悬臂梁假设和半无限体假设,同时考虑了工作辊的压扁,开发出可以计算轧件横向厚度分布的影响函数法,通过对轧件的横向厚度的分析和计算,得出了轧件的横向厚度与不对称轧制条件间的定量关系.轧件横向厚度的计算结果对轧制过程中避免侧弯的发生、提高成材率具有重要意义.  相似文献   

19.
变形速度是轧制中的一个重要因素。导出粘着摩擦和滑动摩擦两种情况下,轧制变形速度的表达式。计算结果表明,粘着摩擦和滑动摩擦变形速度在轧件开始咬入附近处变形速度最大;在轧件与轧辊分离处,变形速度为零,在这点附近粘着摩擦和滑动摩擦变形速度值接近相等,摩擦系数几乎不影响滑动摩擦情况下的变形速度。  相似文献   

20.
冷连轧机轧制力在线计算模型   总被引:4,自引:1,他引:4  
通过将轧制变形区离散化的方法,在考虑变形区内横截面上张应力、摩擦应力等影响因素沿带钢轧制方向分布规律及其与带钢厚度及压下量的关系的基础上,采用数学模型和神经网络相结合的方法计算了金属变形抗力,建立了冷连轧机轧制力在线计算数学模型. 经大型工业轧机生产实践数据检验,该冷连轧机在线轧制力计算模型预报误差控制在6.1%以内,满足模型在线控制要求,可提高在线控制轧制力模型的计算精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号