首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reed MD  DiCarlo L  Nigg SE  Sun L  Frunzio L  Girvin SM  Schoelkopf RJ 《Nature》2012,482(7385):382-385
Quantum computers could be used to solve certain problems exponentially faster than classical computers, but are challenging to build because of their increased susceptibility to errors. However, it is possible to detect and correct errors without destroying coherence, by using quantum error correcting codes. The simplest of these are three-quantum-bit (three-qubit) codes, which map a one-qubit state to an entangled three-qubit state; they can correct any single phase-flip or bit-flip error on one of the three qubits, depending on the code used. Here we demonstrate such phase- and bit-flip error correcting codes in a superconducting circuit. We encode a quantum state, induce errors on the qubits and decode the error syndrome--a quantum state indicating which error has occurred--by reversing the encoding process. This syndrome is then used as the input to a three-qubit gate that corrects the primary qubit if it was flipped. As the code can recover from a single error on any qubit, the fidelity of this process should decrease only quadratically with error probability. We implement the correcting three-qubit gate (known as a conditional-conditional NOT, or Toffoli, gate) in 63 nanoseconds, using an interaction with the third excited state of a single qubit. We find 85?±?1 per cent fidelity to the expected classical action of this gate, and 78?±?1 per cent fidelity to the ideal quantum process matrix. Using this gate, we perform a single pass of both quantum bit- and phase-flip error correction and demonstrate the predicted first-order insensitivity to errors. Concatenation of these two codes in a nine-qubit device would correct arbitrary single-qubit errors. In combination with recent advances in superconducting qubit coherence times, this could lead to scalable quantum technology.  相似文献   

2.
3.
4.
As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.  相似文献   

5.
Nonlinear and quantum atom optics   总被引:2,自引:0,他引:2  
Rolston SL  Phillips WD 《Nature》2002,416(6877):219-224
Coherent matter waves in the form of Bose-Einstein condensates have led to the development of nonlinear and quantum atom optics - the de Broglie wave analogues of nonlinear and quantum optics with light. In nonlinear atom optics, four-wave mixing of matter waves and mixing of combinations of light and matter waves have been observed; such progress culminated in the demonstration of phase-coherent matter-wave amplification. Solitons represent another active area in nonlinear atom optics: these non-dispersing propagating modes of the equation that governs Bose-Einstein condensates have been created experimentally, and observed subsequently to break up into vortices. Quantum atom optics is concerned with the statistical properties and correlations of matter-wave fields. A first step in this area is the measurement of reduced number fluctuations in a Bose-Einstein condensate partitioned into a series of optical potential wells.  相似文献   

6.
7.
Lein M 《Nature》2012,485(7398):313-314
  相似文献   

8.
9.
古典物理学与量子场论的非定域质量模型都违反相对论与因果律;强子产生实验指出自旋*同位旋的量子态分析在质量产生过程中是不合适的;目前粒子物理学不知道内禀量子数(自旋,同位旋,c-数,b-数与t-数)的物理内容及其同质量的关系;在具四元量代数结构的闵柯夫斯基时空中对于粒子“内部”(|xμ|≤l0,R=h-/mc),新微观测度是需要的.  相似文献   

10.
Fedorov A  Steffen L  Baur M  da Silva MP  Wallraff A 《Nature》2012,481(7380):170-172
The Toffoli gate is a three-quantum-bit (three-qubit) operation that inverts the state of a target qubit conditioned on the state of two control qubits. It makes universal reversible classical computation possible and, together with a Hadamard gate, forms a universal set of gates in quantum computation. It is also a key element in quantum error correction schemes. The Toffoli gate has been implemented in nuclear magnetic resonance, linear optics and ion trap systems. Experiments with superconducting qubits have also shown significant progress recently: two-qubit algorithms and two-qubit process tomography have been implemented, three-qubit entangled states have been prepared, first steps towards quantum teleportation have been taken and work on quantum computing architectures has been done. Implementation of the Toffoli gate with only single- and two-qubit gates requires six controlled-NOT gates and ten single-qubit operations, and has not been realized in any system owing to current limits on coherence. Here we implement a Toffoli gate with three superconducting transmon qubits coupled to a microwave resonator. By exploiting the third energy level of the transmon qubits, we have significantly reduced the number of elementary gates needed for the implementation of the Toffoli gate, relative to that required in theoretical proposals using only two-level systems. Using full process tomography and Monte Carlo process certification, we completely characterize the Toffoli gate acting on three independent qubits, measuring a fidelity of 68.5?±?0.5 per cent. A similar approach to realizing characteristic features of a Toffoli-class gate has been demonstrated with two qubits and a resonator and achieved a limited characterization considering only the phase fidelity. Our results reinforce the potential of macroscopic superconducting qubits for the implementation of complex quantum operations with the possibility of quantum error correction.  相似文献   

11.
Bosonic modes have wide applications in various quantum technologies,such as optical photons for quantum communication,magnons in spin ensembles for quantum inf...  相似文献   

12.
13.
运用单磁通量量子(SFQ)读取技术的超导单光子探测器(SSPD)可以实现低抖动信号的读出。通过优化SFQ读出电路的电路参数,输入电流灵敏度被改善到10μA以下,且该结果比SSPD典型的临界电流小。实验使用脉冲发生器作为输入脉冲源,结果显示测出的SFQ读出电路的抖动值远低于目前测量装置系统超过15μA的抖动电流值。SSPD连接到SFQ读出电路的测量抖动值在37 ps的半高全宽(FWHM)时的SSPD偏置电流约为18μA,这是对传统的没有SFQ读出电路,抖动为67 ps的FWHM的显著提高。  相似文献   

14.
该文阐述了量子可逆逻辑电路综合的意义和现状,着重分析了目前量子可逆电路综合的几种主要方法,即基于变化法的综合法、穷举法、RM展开式法以及群论法,讨论了几种方法的核心思想、综合规则及优缺点,并在此基础上提出了改进的一些设想和思路。  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号