首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用光学金相显微镜、扫描电子显微镜及能谱分析、电导率等检测手段,对铸态和均匀化态的2219合金微观组织、第二相分布及电导率进行研究分析。结果表明,2219合金铸态组织存在着枝晶偏析,在晶界上聚集大量的Al2Cu相,并有长条状的脆性相Al7Cu2(Fe、Mn)穿插在晶界上。经525 ℃均匀化处理22 h后,晶界上Al2Cu相回溶到基体中,枝晶网络被破坏,枝晶偏析消除,Cu元素从晶界到晶内的分布趋于平稳;处于亚稳态的溶质原子从过饱和固溶体中析出,在晶内呈细小、弥散地分布,基体溶质原子固溶度降低,电子散射作用减弱,电导率提高10 %IACS。  相似文献   

2.
The influence of different rolling processes on precipitation behaviour, crystallography texture, grain morphology, and their consequent effects on tensile properties for Al–Cu–Li alloy AA2195 was investigated in the present work. The H-T8 samples (hot rolled ?+ ?T8) presented better tensile strength and ductility (with serious strength anisotropy) than the HC-T8 samples (hot rolled ?+ ?cold rolled ?+ ?T8), due to their different microstructures and textures. The higher dislocation density was found in the H-T8 samples, which promoted the nucleation of main strengthening phase T1 in the matrix and suppressed the grain boundary precipitation, resulted in better strength and ductility. The increase of the dynamic recovery (DRV) during hot rolling enhanced the generation of Brass texture, and brought serious strength anisotropy. The cold rolling was performed after the hot-rolling process for the HC-T8 samples which increased deformation energy and resulted in full recrystallization of the deformed microstructure during the following solution treatment. The formation of recrystallized microstructure reduced the dislocation density and the heterogeneous precipitate nucleation positions which limited the strengthening phase precipitation in matrix and accelerated the precipitation along grain boundaries, resulted in fewer T1 precipitates, coarse grain-boundary precipitates (GBPs), and wider precipitate-free zones (PFZs). The localized strain may be concentrated on the grain boundary to induce the dislocation pile-up, breaking of the GBPs, and intergranular fracture during stretching.  相似文献   

3.
采用晶体相场模型模拟小角度晶界结构和在外加应力作用下晶界、位错的演化过程,从位错的运动形式、体系自由能与应变关系等角度,讨论晶界位错运动和湮没过程。结果表明:在稳定的小角度晶界中,位错间距与位向差成反比。位错和晶界区域具有较高的能量密度;外加应力会导致一个位错组脱离晶界而分解成两个位错组,且有诱发晶界湮没的趋势;晶界湮没过程可以出现4个阶段或2个阶段,且存在敏感位向差角,位向差稍高于5.85°时晶界湮没过程呈4个阶段,位向差稍低于5.85°时晶界湮没过程呈2个阶段;位向差越小,晶界湮没过程越简单快捷。  相似文献   

4.
Under the conventional solidification condition, a liquid aluminium alloy can be hardly undercooled because of oxidation. In this work, rapid solidification of an undercooled liquid Al80.4Cu13.6Si6 ternary eutectic alloy was realized by the glass fluxing method combined with recycled superheating. The relationship between superheating and undercooling was investigated at a certain cooling rate of the alloy melt. The maximum undercooling is 147 K (0.18T E). The undercooled ternary eutectic is composed of α(Al) solid solution, (Si) semiconductor and θ(CuAl2) intermetallic compound. In the (Al+Si+θ) ternary eutectic, (Si) faceted phase grows independently, while (Al) and θ non-faceted phases grow cooperatively in the lamellar mode. When undercooling is small, only (Al) solid solution forms as the leading phase. Once undercooling exceeds 73 K, (Si) phase nucleates firstly and grows as the primary phase. The alloy microstructure consists of primary (Al) dendrite, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic at small undercooling, while at large undercooling primary (Si) block, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic coexist. As undercooling increases, the volume fraction of primary (Al) dendrite decreases and that of primary (Si) block increases. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101, 50395105) and the Doctorate Foundation of Northwestern Polytechnical University (Grant No. CX200419)  相似文献   

5.
The microstructure and room-temperature tensile properties of Ti14, a new α+Ti2Cu alloy, were investigated after conventional forging at 950℃ and semi-solid forging at 1000 and 1050℃, respectively. Results show that coarse grains and grain boundaries are obtained in the semi-solid alloys. The coarse grain boundaries are attributed to Ti2Cu phase precipitations occurred on the grain boundaries during the solidification. It is found that more Ti2Cu phase precipitates on the grain boundaries at a higher semi-solid forging temperature, which forms precipitated zones and coarsens the grain boundaries. Tensile tests exhibit high strength and low ductility for the semi-solid forged alloys, especially after forging at 1000℃. Fracture analysis reveals the evidence of ductile failure mechanisms for the conventional forged alloy and cleavage fracture mechanisms for the alloy after semi-solid forging at 1050℃.  相似文献   

6.
Retrogression characteristics of a novel Al-Cu-Li-X alloy of 2A97 were studied by hardness testing, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The retrogression treatments of aging at 155℃ for 12 h followed by aging at 220 and 240℃ were chosen by determining the peak temperature of δ' precipitation at 230℃ by DSC. The retrogression treatment at a lower temperature of 220℃ causes the precipitation and coarsening of δ' and θ' phases in the matrix, resulting in an increase in hardness. Retrogression at a higher temperature of 240℃ causes the dissolution and coarsening of δ' and θ' precipitates in the matrix and on the grain boundaries, resulting in a decrease in hardness. Microstructural changes upon retrogression including the appearance of equilibrium precipitates such as T1, T2, δ', and θ are confirmed by the selected area electron diffraction and the bright and dark field image analysis.  相似文献   

7.
The dependence of the macroscopic magnetism for NdCoFeB permanent magnet on the degree of grain alignment has been studied. With an increase in grain alignment degree, the coercivity of the permanent magnet decreases and the remanence increases. The decrease rate of the coercivity is smaller than the increase rate of the remanence. The coercivity H c(θ) increases with increasing angle θ between the applied field and the texture axis, and for the permanent magnets with good grain alignment the increase rate of H c(θ) is large. These experimental results can be interpreted by using the starting field theory of coercivity.  相似文献   

8.
The physically-based internal state variable (ISV) models were used to describe the changes of dislocation density, grain size, and flow stress in the high temperature deformation of titanium alloys in this study. The constants of the present models could be identified based on experimental results, which were conducted at deformation temperatures ranging from 1093 K to 1303 K, height reductions ranging from 20% to 60%, and the strain rates of 0.001, 0.01, 0.1, 1.0, and 10.0 s-1. The physically-based internal state variable models were implemented into the commercial finite element (FE) code. Then, a three-dimensional (3D) FE simulation system coupling of deformation, heat transfer, and microstructure evolution was developed for the blade forging of Ti-6Al-4V alloy. FE analysis was carried out to simulate the microstructure evolution in the blade forging of Ti-6Al-4V alloy. Finally, the blade forging tests of Ti-6Al-4V alloy were performed to validate the results of FE simulation. According to the tensile tests, it is seen that the mechanical properties, such as tensile strength and elongation, satisfy the application requirements well. The maximum and minimum differences between the calculated and experimental grain size of primary α phase are 11.71% and 4.23%, respectively. Thus, the industrial trials show a good agreement with FE simulation of blade forging.  相似文献   

9.
为预测铝合金铸件凝固时的微观组织演化,本文采用当量法对KGT模型进行扩展,建立了适应多元合金的界面前沿跟踪模型?应用该模型对Al-6Si-4Cu合金凝固过程的微观组织的演化过程进行了模拟?实验结果表明,所建立的模型能够再现凝固过程中自由枝晶生长形态?液相中的溶质分布以及多晶生长时枝晶的竞争生长过程?该模型可以实时地跟踪凝固界面前沿的位置,节省计算时间,提高效率?  相似文献   

10.
The microstructures and tensile behaviours of cerium (Ce) doped polycrystalline Co-9Al-4.5W-4.5Mo-2Ta-0.02B alloys (doped 0.05 and 0.2 at.% Ce) at room temperature (RT) and 600–800 °C were investigated. In-suit tensile test under SEM was conducted to understand the deformation and damage mechanisms at RT. Aged at 800 °C for 50 h, the 0.05Ce alloy consisted of a Co solid-solution matrix (γ-CoSS) and nano-scale cuboidal γ′-Co3(Al, W) precipitates, while for the 0.2Ce alloy, κ-Co3(W, Mo) precipitates and γ′-depleted zone were present at the grain boundaries in addition to the γ/γ′ microstructure. The 0.05Ce alloy exhibited flow stress anomalies at 700 °C. With higher Σ1∼3 boundary fraction and cleaned-up grain boundary, the 0.05Ce alloy always showed greater strength and elongation than the 0.2 Ce alloy with the grain boundary precipitates at temperatures up to 800 °C. Doped 0.05 at.% Ce made the Co-9Al-4.5W-4.5Mo-2Ta-0.02B alloy have an excellent elongation of 6.1% at 700 °C, owing to a mixed transgranular dimple plus intergranular cleavage fracture. The slip bands transferring through the low-angle grain boundary and slipping of the γ′-Co3(Al, W) in the 0.5Ce alloy resulted in excellent ductility of 20.4% at RT.  相似文献   

11.
通过金相组织分析、扫描电子显微镜分析、X射线衍射、硬度、电导率、室温拉伸性能、断后伸长率和抗晶间腐蚀等微观组织观察及性能表征,研究了四种不同固溶制度对Al-5.6Cu-1.7Mg-0.2Zr-0.1Sr-0.6Ti合金微观组织和性能的影响。结果表明:随着固溶温度的升高,合金中的晶粒逐渐变大;当固溶温度低于520℃时,合金中的未溶相的数量和尺寸随着固溶温度的升高而减小;当固溶制度为510℃×2 h+520℃×2 h时,合金中的未溶相开始增多,合金出现轻微过烧,断后伸长率及抗晶间腐蚀性能变差,但抗拉强度最高,达到了490.14 MPa。合金的位错强度和位错贡献值随着固溶温度的升高而减小,合金中的强化效果主要来源于固溶强化和时效析出强化。合金在T6状态下,(490℃×2 h+500℃×2 h)和(500℃×2 h+510℃×2 h)两种不同固溶制度下的抗拉强度和断后伸长率等力学性能和抗晶间腐蚀性能都较优,这两种固溶制度均是适合Al-5.6Cu-1.7Mg-0.2Zr-0.1Sr-0.6Ti合金的固溶制度。  相似文献   

12.
The effects of Al-P addition on the microstructure and mechanical properties of as-cast Mg–5%Sn–1.25%Si magnesium alloy were investigated. The results show that the phases of the as-cast alloy are composed of α-Mg, Mg2 Sn, Mg2 Si, little P, and AlP. The Chinese character shape Mg2 Si phase changes into a granular morphology by P addition because AlP can act as a heterogeneous nucleation core for the Mg2 Si phase. When 0.225wt% of Al–3.5%P alloy is added, the mechanical properties of the Mg–5%Sn–1.25%Si alloy are greatly improved, and the tensile strength increases from 156 to 191 MPa, an increase of 22.4% compared to the alloy without P addition. When the amount of Al–3.5%P reaches 0.300wt%, a segregation phenomenon occurs in the granular Mg2 Si phase, and the tensile strength and hardness decrease though the elongation increases.  相似文献   

13.
A new theory of two-phase zone continuous casting(TZCC) has been established in order to improve mechanical properties,corrosion resistance and conductivity properties of metals with wide solid-liquid two-phase zone.A Cu-Sn alloy with continuous columnar grains-covered non-columnar small grains of same phase microstructure containing many self-closed grain boundaries were produced by the self-developed TZCC process.Compared with water-cooled mold continuous casting Cu-Sn alloy,the tensile strength and ductility of the TZCC alloy are greatly improved,the corrosion resistance is improved up to fifteenfold,and the conductivity is improved by 12.2%.The excellent high strength may be due to the effective blockage of dislocation motion by numerous self-closed grain boundaries,which suppress the propagation of grain boundary corrosion,and the extremely low electrical resistivity and high ductility may be attributed to continuous columnar grains.  相似文献   

14.
近液相线半连续铸造中凝固组织的多尺度模拟   总被引:2,自引:0,他引:2  
建立了描述连续铸造过程的温度场模型及相变模型,通过固相率变化将宏观和介观尺度上的模拟耦合起来.利用外推边界条件对Al-Cu合金在近液相线半连续铸造过程的稳态温度场进行了计算;根据连续铸造特点,提出了用液/固相变区域中元胞的平均过冷度作为形核计算的基本参数,避免了铸件中心区域的多余形核问题.对Al-(3.5~10)%Cu合金、铸造速度为2.0 mm/s的液相线铸造的凝固组织进行了模拟,并且ZL201合金的模拟结果与实验吻合.计算表明:合金成分对半固态合金组织的形成有较大影响,当合金质量分数在(8~10)%时可获得晶粒大小和分布良好的合金组织.  相似文献   

15.
Microstructural evolution and phase transformation induced by different heat treatments of the hypereutectic aluminium-silicon alloy, Al-25Si-5Fe-3Cu (wt%, signed as 3C), fabricated by traditional cast (TC) and spray forming (SF) processes, were investigated by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy and X-ray diffraction techniques. The results show that Al7Cu2Fe phase can be formed and transformed in TC- and SF-3C alloys between 802–813 K and 800–815 K, respectively. The transformation from β-Al5FeSi to δ-Al4FeSi2 phase via peritectic reaction can occur at around 858–870 K and 876–890 K in TC- and SF-3C alloys, respectively. The starting precipitation temperature of δ-Al4FeSi2 phase as the dominant Fe-bearing phase in the TC-3C alloy is 997 K and the exothermic peak about the peritectic transformation of δ-Al4FeSi2→β-Al5FeSi is not detected in the present DSC experiments. Also, the mechanisms of the microstructural evolution and phase transformation are discussed.  相似文献   

16.
通过拉伸试验、冲击试验以及微观组织观察试验,分析降低Cu含量对喷射成形7055铝合金强度、断裂韧性和微观组织的影响。力学性能试验表明,7055铝合金中Cu的质量分数由2.55%降低到2.17%时,对其强度和伸长率影响不大,但Cu含量降低后合金的断裂韧性显著提高。微观组织分析表明,Cu含量降低前晶界上存在粗大的Al7Cu2Fe相,Cu含量降低后晶界上的粗大析出相明显减少;断口分析表明,Cu含量降低前拉伸断口中存在较多的Al7Cu2Fe第二相,Cu含量降低后Al7Cu2Fe第二相明显减少。  相似文献   

17.
【目的】研究高温下晶体的晶界位错结构组态演化。【方法】采用晶体相场(PFC)方法模拟高温条件下小角对称倾侧晶界结构,研究施加x轴方向拉应变和y轴方向压应变作用下晶体的晶界位错的迁移、增殖和湮没。【结果】在施加应变的作用下,晶界位错迁移出晶界向晶粒内部移动,在位错增殖和湮没的过程中发生位错反应。【结论】位错增殖的本质是产生了分布于晶界两侧的对称位置数量相等且Burgers矢量总和为0的多组位错对。在晶界处新增殖的位错对,其左侧和右侧位错对的Burgers矢量之和分别不为0且方向相反。在位错增殖和湮没的过程中,样品的总Burgers矢量是守恒的,总是等于初始晶界处的位错组A的Burgers矢量。  相似文献   

18.
The effect of solution treatment on the microstructure and creep properties of forged TiAl-Nb alloys was investigated.The results showed that the microstructure of forged alloy mainly consisted of γ/α2 lamellar colonies and fine equiaxed recrystallized γ/α2 grains.During the solution treatment the microstructure of the alloy transformed into a fully lamellar structure due to the lamellar colonies growth by consuming equiaxed grains.Compared with the forged alloy the creep l...  相似文献   

19.
采用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射(XRD)、维氏硬度和拉伸-压缩试验机等手段,评价Y含量对AK30镁合金微观组织和力学性能的影响。研究结果发现,Y含量能够显著影响AK30镁合金凝固组织和力学性能。当合金中没有添加Y元素时,AK30镁合金的晶粒粗大,晶界处有大量的Mg_3Zn相分布,力学性能最差。当合金中添加1%的Y元素时,AK30镁合金的晶粒尺寸没有发生变化,依然较大;但晶界处的Mg_3Zn相却在减少,而合金的晶内却出现了少量的Mg_3Y相,合金的力学性能增加。当合金中的Y含量增加到2%时,晶粒细化,晶体内析出了大量的Mg_3Zn相与α-Mg相组成的共晶组织,力学性能达到最大值。当合金的Y含量增加到4%时,晶粒粗化,且大量的Mg_3Zn脆性相在晶界处析出,合金的力学性能下降。为了提高AK30镁合金的力学性能,应该向AK30镁合金中添加2%的Y元素。  相似文献   

20.
The rapid solidification behavior of Co-Sn alloys was investigated by melt spinning method.The growth morphology of αCo phase in Co-20% Sn hypoeutectic alloy changes senistively with cooling rate.A layer of columnar αCo dendrite forms near the roller side at low colling rates.This region becomes small and disappears as the cooling rate increases and a kind of very fine homogeneous microstructure characterized by the distribution of equiaxed αCo dendrites in γCo3Sn matrix is subsequently produced.For Co-34.2% Sn eutectic alloy,anomalous eutectic forms within the whole range of cooling rates.The increase of cooling rate has two obvious effects on both alloys:one is the microstructure refinement,and the other is that it produces more crystal defects to intensify the seattering of free electrons,leading to a remarkable increase of electrical resistivity,Under the condition that the grain boundary reflection coefficient γ approaches 1,the resistivity of rapidly solidified Co-Sn alloys can be predicted theoretically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号