首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
中国科学家屠呦呦由于在发现青蒿素和治疗疟疾新型疗法上的贡献而获得了2015年诺贝尔生理或医学奖.现如今以青蒿素为先导化合物衍生得到的蒿甲醚和青蒿琥酯等青蒿素类药物是治疗疟疾唯一有效的药物.但目前市售的青蒿素仍是依靠植物黄花蒿的提取,其高效人工合成依然是合成化学领域的一个挑战.由于生物合成青蒿酸的成功实现,使得从青蒿酸到青蒿素的高效化学合成,特别是无光照化学合成工艺的开发,成为人工合成青蒿素能否工业化生产的关键所在.本文从可工业化的角度,简要综述了青蒿素化学合成的研究进展.主要讨论的内容包括青蒿素化学合成的背景、仿生合成的探索以及无光照人工合成的研究等方面,为青蒿素的合成及其相关领域的科研工作者提供一个简单明了的概括.  相似文献   

2.
吗啡是鸦片中重要的生物碱,其合成生物学制造及相关工业化生产,是合成生物学领域继人工合成青蒿素之后最有代表性的实例.本文从吗啡合成的有关代谢通路的阐明和设计开始,总结整理吗啡在酵母中的生物合成方法,介绍这一划时代工作的全过程及合成生物学技术的潜力和前景.  相似文献   

3.
邓定安 《科学通报》1981,26(19):1209-1209
中药青蒿为菊科植物黄花蒿(Artemisia annua L.),我国民间用于治疗疟疾。根据文献报道从该植物中分得蒿酮、异蒿酮、桉油精、左旋樟脑、α-丁香烯、β-丁香烯、异丁香烯、杜松烯、氧化丁香烯,倍半萜内酯有Arteannuin B(Ⅱ)、青蒿素(Ⅲ)、青蒿甲素(Ⅳ)、青蒿丙素(Ⅴ),此外,尚有香豆素和黄酮体等。我们从山东产的青蒿丙酮提取物经硅胶柱层析,除分得Arteannuin B、青蒿素、青蒿甲素外,还分得一新的倍半萜酸,定名为青蒿酸Artemisic acid,根据光谱分析,生源及化学反应确定其结构为(Ⅰ)。  相似文献   

4.
优系青蒿法呢基焦磷酸合酶基因的克隆和酶学分析   总被引:7,自引:0,他引:7  
从青蒿(Artemisia annua L)高产株系025的cDNA文库中克隆到了一个编码青蒿法呢基焦磷酸合酶(AaFPS1)的cDNA(af1). 序列分析表明, 这一cDNA编码一个含343个氨基酸残基的蛋白质, 分子量为39 kD. 推导出的氨基酸序列与来自其他植物、哺乳动物及酵母的FPS相似, 也包含异戊烯基转移酶和聚异戊烯基合酶所共有的5个保守域. 此cDNA在大肠杆菌中的表达产物表现出明显的FPS酶学活性. 通过离子交换层析纯化后, 进一步测定了其酶学动力学. 上述结果将进一步推动青蒿素生物合成分子调控的研究.  相似文献   

5.
青蒿素被世界卫生组织推选为抗疟一线药物,中药青蒿原植物黄花蒿(Artemisia annua L.)是青蒿素的主要来源.然而,全球范围内黄花蒿青蒿素含量差异较大,大部分地区野生资源无工业提取价值.本文从全球视角对黄花蒿分布与产地适宜性、引种栽培等青蒿素资源再生进行了分析与阐述,并对原料提取工艺、生物合成和化学合成进行综合分析.通过研究及分析发现,高青蒿素含量黄花蒿生态适宜区主要在中国秦岭-淮河分界线以南,面积1.54×10~6 km~2,占全球分布的77.08%.巴西和美国也有少量分布,面积分别为1.49×10~6 km~2(7.43%)和1.30×10~6 km~2(6.47%).越南和日本有零星分布.优质黄花蒿生态次适宜区包括亚洲东南部、欧洲西部、北美洲南部与南美洲中部.通过黄花蒿新品种培育和规范化栽培可显著提高青蒿素含量.青蒿素资源再生与原料生产为"一带一路"走出去的全球中药资源国家战略实施奠定基础.  相似文献   

6.
朱彤  吴边 《科学通报》2019,64(17):1791-1798
合成微生物组是指运用合成生物学方法构建的功能菌群.合成微生物组以代谢通路模块化为核心特征,每个代谢模块的工作由一个菌株完成,从而实现多个菌株的分工与合作.与单菌株相比,合成微生物组具有降低菌株代谢负担与遗传改造难度、提供多样的元件表达平台、实现"即插即用"的模块替换等优势.在合成生物学与微生物组学快速发展、交汇融合的影响下,合成微生物组已成为近些年微生物领域新的研究热点,在生物合成平台化合物、复杂大分子以及生产生物燃料等方面具有广阔的应用前景.本文介绍了合成微生物组的设计原理与优势,总结了近些年的主要研究成果,阐述其目前面临的挑战与机遇,最后对其未来的发展进行展望.  相似文献   

7.
《科学通报》2021,66(3):310-318
酿酒酵母是合成多种天然产物的微生物细胞工厂,合理利用酿酒酵母底盘细胞内源的代谢途径可生产高附加值的生物医药、食品保健和精细化学品类产物.如何精细调控和优化酿酒酵母胞内代谢流是实现目标化学物高产量、高产率和高转化的关键问题.乙酰辅酶A是中心代谢和天然产物合成的基本前体,精细调控乙酰辅酶A的合成是实现目标化合物高产的重要策略;改造酿酒酵母的甲羟戊酸途径,引入外源途径酶,表达萜类合成酶生产不同种类的萜类化合物;优化脂肪酸合成途径合成特定链长的脂肪酸及脂肪酸衍生物.本文总结了强化酿酒酵母中乙酰辅酶A积累的代谢工程策略,重构甲羟戊酸途径、脂肪酸途径从头合成天然萜类化合物和脂肪酸衍生物的研究进展,为利用酿酒酵母底盘细胞生产天然产物的相关研究提供代谢工程改造策略.  相似文献   

8.
卫生部中医研究院中药研究所(简称"中研院中药所",现为中国中医科学院中药研究所)屠呦呦及其研究组在对中药进行大量研究基础上,受中医典籍《肘后备急方》的启迪创建了青蒿提取方法,1971年10月获得青蒿抗疟活性化学部位,1972年11月从中发现青蒿素.青蒿素是一个仅由碳、氢、氧3种元素组成、具有过氧基团特殊结构的新型倍半萜内酯,是与已知抗疟药在化学结构、作用机制完全不同的新化合物.临床疗效几乎可达100%,具有速效、高效和低毒等特点.目前,青蒿素及其衍生物是世界上治疗疟疾最有效的药物,青蒿素联合疗法已被用于几乎所有国家和地区的疟区,每年治疗病例一亿以上,降低了全球疟疾的发生率和死亡率,已挽救了数百万人的生命.青蒿素来自中医药、发现启迪于中医药.它是中国传统医学和现代科技紧密结合.融合多学科和行业的系统创新工程,凝聚着一群中国科学家的艰辛和智慧,是中医药对人类健康事业作出的一项巨大贡献.我国政府先后11次给参加这一工程的相关单位授予国家发明奖、国家自然科学奖、国家科技进步奖等各类大奖,屠呦呦也因此获得了2015年度诺贝尔生理学或医学奖和2016年度国家最高科学技术奖.  相似文献   

9.
微生物细胞工厂是合成生物学的重要研究方向之一.本文以微生物细胞工厂的产业应用为需求牵引,从物质代谢和能量代谢两方面系统阐述了细胞工厂的合成代谢调控机制,为高效细胞工厂创建奠定了理论基础.本团队在物质代谢方面,建立了新酶元件挖掘技术平台,完成了一系列三萜化合物的合成途径解析;开发了染色体多基因文库调控、糖基化酶碱基编辑器(glycosylase base editor, GBE)等途径精准调控使能技术,完成一系列化学品合成途径限速步骤的鉴定,解决了元件与合成途径的适配问题.在能量代谢方面,设计创建了4种葡萄糖新型能量代谢模式,解决了合成途径还原力供给与需求不平衡的问题.在此基础上,创建出一系列微生物细胞工厂, 14个化学品完成技术转让,其中4个化学品实现万吨级产业化,支撑一家企业在科创板上市,推动了微生物细胞工厂的产业应用.最后,对未来微生物细胞工厂的研究进行了展望.  相似文献   

10.
3-羟基丙酸是重要的平台化合物,其聚合物是一种性能优异的新型可生物降解塑料,而且3-羟基丙酸与其他羟基脂肪酸形成共聚物时,可提高材料的延展性和生物降解能力.由于已知的生物都不能天然合成聚3-羟基丙酸,所以早期研究中聚3-羟基丙酸及含3-羟基丙酸单体的共聚物的生物合成都依赖于3-羟基丙酸或其结构相关前体,如丙烯酸、1,3-丙二醇等.这些价格昂贵的前体物质的使用,增加了聚3-羟基丙酸的生产成本.近年来,随着基因工程技术的应用,已有两条人工代谢途径可利用廉价碳源(如葡萄糖、甘油等)合成聚3-羟基丙酸,而且结构和单体比例可控的系列3-羟基丙酸共聚物也已成功合成.与使用结构相关前体相比,聚3-羟基丙酸及其共聚物的生产成本已大大降低,但仍然高于石化基塑料.目前,聚3-羟基丙酸合成研究的主要问题是如何进一步提高聚3-羟基丙酸及其共聚物的合成效率,降低生产成本.  相似文献   

11.
青蒿素类药物的发展历史*   总被引:2,自引:0,他引:2       下载免费PDF全文
王满元 《自然杂志》2012,34(1):44-47
由于青蒿素的发现和在抗疟领域的使用,在全球范围内,特别是在发展中国家,挽救了几百万疟疾患者的生命,2011年度美国拉斯克临床医学奖颁给了屠呦呦研究员。为了帮助读者更好地了解青蒿素类药物,本文对世界卫生组织推荐的一线抗疟药物--青蒿素类药物的发展历史做一简要概述。  相似文献   

12.
周公度 《自然杂志》2011,33(4):202-207
本文摘录自作者所著的《化学是什么》一书,该书由北京大学出版社出版。用5小节内容说明化学对社会发展、环境保护和人民生活所作出的贡献,提高公众对化学的认识:用火的化学活动使猿猴进化成人;石油能源的开采利用;玻璃的研制;环境和化学;青蒿素的化学改性。  相似文献   

13.
14.
郭晓强  黄卫人 《自然杂志》2017,39(3):210-221
酵母是一种单细胞真核生物,基于自身诸多优势而成为生物化学、遗传学和细胞生物学的重要研究模型。借助酵母无细胞体系阐明了酶的功能、酶的构成、辅酶特性、tRNA结构和真核转录机制等。酵母作为模式生物在细胞周期、囊泡运输、细胞自噬、端粒保护、蛋白质折叠、未折叠蛋白应答、DNA损伤应答、雷帕霉素靶点和组蛋白调节等重大发现中做出了根本性贡献。许多科学家也因此荣获诺贝尔奖。本文全面介绍酵母在科研中的应用价值。  相似文献   

15.
芦笛 《自然杂志》2013,35(4):264-273
作为海洋藻类的一部分,大型海藻通过光合作用参与了海洋对全球CO2和O2的周转,其食用和药用价值也 得到了广泛应用。因此无论从生态还是经济角度来看,研究大型海藻通过光合作用对CO2进行固定和代谢的过程都 具有重要意义。到目前为止,世界上对大型海藻光合碳代谢途径的研究从代谢组学和酶学角度证明了大型海藻体内 除了C3途径外,还同时存在不能确定完整与否的PEPCK 或PEPC 类型的C4途径或CAM途径;光合气体交换的结 果显示其光合碳代谢途径从整体上表现出类似C4(C4-like)类型。这种情况与一些体内存在C4途径的陆生C3植物相 似。因此大型海藻光合碳代谢途径仍然有待深入研究。  相似文献   

16.
细胞色素P450 (CYP)是一类含亚铁血红素的酶, 不但能催化内源性底物的生物合成和代谢, 而且对外源性化合物的代谢、激活以及降解毒性等起着重要作用. P450 也是人体内最主要的药物代谢酶, 能催化代谢约75%的临床药物. 已有的P450 酶晶体结构显示, 绝大多数酶呈现闭合的构象, 其催化活性位点位于血红素上方且深埋于蛋白质的中心, 没有明显的通道用于配体进出活性中心. 因此一个有趣而重要的问题是, 配体如何进出酶的活性中心达到被氧化或发生抑制作用? 近年来, 关于P450 酶配体通道的研究取得了显著进展. 本文重点综述了通道研究的实验方法及6 类P450 酶可能存在的通道和作用机制, 并对其未来的发展方向进行了展望.  相似文献   

17.
乙烯是一种可促进果实成熟的内原植物激素.随着分子生物学的发展,已克隆出几个与乙烯合成有关的果实成熟基因,并获得了反义基因转化植株。本文简要综述了用基因工程手段调控果实的成熟,基因工程技术对认识果实成熟机理的贡献,以及乙烯调控果实成熟的分子机理.  相似文献   

18.
19.
小G 蛋白Ran 在细胞周期调控中的作用   总被引:2,自引:0,他引:2  
刘佩伟  齐洺  任海云 《科学通报》2011,56(30):2472-2477
Ran(Ras-Related Nuclear Protein)作为小G 蛋白家族的一类, 具有GTP 水解酶的功能, 在细胞内行使“分子开关”的作用. 利用酵母和脊椎动物细胞的研究结果表明, Ran 参与细胞间期的核质运输、细胞分裂前期的纺锤体组装和细胞分裂末期的核膜重建等过程. 虽然在高等植物细胞中, 关于Ran 功能的研究报道还十分有限, 但是近来利用不同模式植物的研究结果表明,在多种植物细胞中, Ran 都参与了与细胞周期进程相关过程的调节. 此外, 也有研究表明Ran还影响生长素信号通路. 因此, Ran 蛋白在动物及植物等不同物种之间的功能具有一定保守性和特异性.  相似文献   

20.
生物液体燃料——燃料酒精   总被引:1,自引:0,他引:1       下载免费PDF全文
江宁 《自然杂志》2007,29(1):30-30
燃料酒精作为可再生能源不会枯竭,并且不会引起温室效应。微生物发酵糖可以生产酒精。目前在工业生产中用于发酵产酒精的微生物主要是酿酒酵母和运动发酵单胞菌。包括秸秆在内的含有糖类物质的生物质都可能作为酒精发酵的原料,大分子物质的利用需先经过酶的降解。生物酒精作为石油的替代物,其产业链还在继续延伸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号